

DEUTSCH

Bedienungsanleitung

PMX

Hottinger Brüel & Kjaer GmbH Im Tiefen See 45 D-64293 Darmstadt Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbkworld.com www.hbkworld.com

Mat.:

DVS: A04353 03 G00 03

07.2022

© Hottinger Brüel & Kjaer GmbH

Änderungen vorbehalten. Alle Angaben beschreiben unsere Produkte in allgemeiner Form. Sie stellen keine Beschaffenheits- oder Haltbarkeitsgarantie dar.

INHALTSVERZEICHNIS

1	Sicherheitshinweise	12
2 2.1 2.2	Verwendete Kennzeichnungen In dieser Anleitung verwendete Kennzeichnungen Auf dem Gerät angebrachte Symbole	1 5 15 16
3 3.1 3.2	Hinweise zur Benutzung Anwendung dieser Anleitung Wissenswertes über die PMX-Dokumentation	17 17 18
4	Produktbeschreibung PMX	19
5 5.1 5.2 5.3 5.4	Typenübersicht, Lieferumfang und Zubehör Das PMX-System Lieferumfang Zubehör PMX-Webserver und Software	22 27 27 27 29
6 6.1 6.2	Schutzart / Gehäuse / Schirmungskonzept Montage im Schaltschrank Freie Montage	33 33 34
7 7.1 7.2 7.3 7.4 7.5	Montage/Demontage/Austausch Montagewerkzeuge und Anzugsmomente Tragschiene montieren Wandhalter montieren Montage der Bleche für Kabelbefestigung (optional) Mess- und Kommunikationskarten austauschen	37 38 41 44 45
8 8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 8.4 8.4.1	Elektrische Anschlüsse PMX Steckertechnologie und Klemmbereiche Funktionsübersicht PMX Kombinationsmöglichkeiten der Einschubkarten Bedeutung der Anschlussbuchsen des Grundgerätes LEDs zur Systemkontrolle (Geräte-LED) Feldbus-LEDs Messkarten-LEDs Versorgungsspannung Messkarten / Aufnehmeranschluss PX455	47 47 49 50 51 53 58 62 63
8.4.2	DMS- und induktive Vollbrücken (6-Leiter-Schaltung)	64

8.4.3	DMS- und induktive Halbbrücken (6-Leiter-Schaltung)	65
8.4.4	DMS- und induktive Vollbrücken in 6-Leiter-Schaltung mit Zero-Wire-TEDS	65
8.4.5	DMS- und induktive Halbbrücken in 6-Leiter-Schaltung mit Zero-Wire-TEDS	67
8.4.6	DMS- und induktive Vollbrücken (4-Leiter-Schaltung)	69
8.4.7	DMS- und induktive Halbbrücken (4-Leiter-Schaltung)	70
8.4.8	DMS- und induktive Vollbrücken (4-Leiter-Schaltung) mit Zero-Wire-TEDS	71
8.4.9	DMS- und induktive Halbbrücken (4-Leiter-Schaltung) mit Zero-Wire-TEDS	73
8.4.10	Eigensichere Messkreise – Betrieb mit Zenerbarrieren	74
8.4.11	LVDT-Aufnehmer	76
8.4.12	LVDT-Aufnehmer mit Zero-Wire-TEDS	76
8.4.13	Potenziometrische Aufnehmer	77
8.4.14	Potenziometrische Aufnehmer mit Zero-Wire-TEDS	78
8.4.15	PX455 mit Pt100-Temperaturmessung	79
8.4.16	PX401	81
8.4.17	Spannungsquelle ± 10 V	82
8.4.18	Stromquelle ± 20 mA	82
8.4.19	Stromsenke ± 20 mA	83
8.4.20	IEPE-Aufnehmer mit externem Verstärker	84
8.4.21	PX401 mit Ladungsverstärker	84
8.4.22	Potenzialtrennung bei PX401	86
8.4.23	PX460	87
8.4.24	Spannungsversorgung für Signalgeber und Aufnehmer bis 24 V _{DC} Nennspannung	89
8.4.25	Spannungsversorgung für Signalgeber und Aufnehmer bis 5 V _{DC}	
	Nennspannung	90
8.4.26	Frequenzmessung symmetrisch (differentiell)	91
8.4.27	Frequenzmessung asymmetrisch (einpolig)	92
8.4.28	Drehgeber und Inkrementalencoder, symmetrisch (differentiell)	93
8.4.29	Drehgeber und Inkrementalencoder mit Richtungssignal, symmetrisch (differentiell)	94
8.4.30	Drehgeber und Inkremantalencoder, asymmetrisch (einpolig)	95
8.4.31	Drehgeber und Inkrementalencoder mit Richtungssignal, asymmetrisch (einpolig)	96
8.4.32	SSI-Encoder (nur aktiv)	97
8.4.33	Induktive Dreh-oder Impulsgeber (nur passiv)	98
8.4.34	Anschluss und Konfiguration der HBM-Drehmomentmesswellen (T10, T12, T40)	100
8.4.35	Anschluss und Konfiguration der HBM-Drehmomentmesswelle T210	106

8.4.36	Anschluss und Konfiguration der HBM-Drehmomentmesswelle T21WN	111
8.4.37	Anschluss und Konfiguration der HBM-Drehmomentmesswelle T20WN (ohne VK20A)	116
8.4.38	Anschluss und Konfiguration der HBM-Drehmomentmesswelle T20WN (mit VK20A)	118
8.5	Ein-/Ausgabekarten	
8.5.1	PX878	
8.5.2	Analogausgang ± 10 V	119
8.5.3	Digitalein- und Digitalausgänge	
8.5.4	Externe Versorgungsspannung für die digitalen Ein- und Ausgänge (PX878)	122
8.6	Kommunikationskarten	125
8.6.1	Anschlussbelegung PX01EC EtherCAT®-Feldbusmodul	125
8.6.2	Anschlussbelegung PX01EP EtherNet/IP™-Feldbusmodul	125
8.6.3	Anschlussbelegung PX01PN PROFINET® IO-Feldbusmodul	126
8.7	TEDS-Aufnehmer	126
8.7.1	TEDS anschließen	126
8.7.2	Inbetriebnahme des TEDS-Moduls	127
8.7.3	Parametrieren des PMX mit TEDS	127
9	Synchronisierung und Zeiterfassung	
9.1	Synchronisation über PMX-interne Synchronisierung	129
9.2	Externe synchrone Messwerterfassung über einen NTP-Server im Netzwerk	131
9.3	Messwerterfassung über Feldbus: EtherCAT®, PROFINET® IO, EtherNet/IP™	132
9.4	Vergleich der Synchronisationsmechanismen	
10	Netzwerk, Datensicherheit, Benutzerrechte	134
10.1	Netzwerkzugriff und Fernwartung	134
10.2	Datensicherheit	135
10.3	Benutzerrechteverwaltung und Passwörter	135
10.3.1	Benutzerrechteverwaltung	135
10.3.2	Passwörter	136
10.3.3	Benutzerebene durch Steuerung vorgeben	136
11	Inbetriebnahme	
11.1	Hardware einrichten	
11.1.1	Spannungsversorgung / Aufnehmer	137
11.1.2	Ethernet-Verbindung	
11.2	Integrierter PMX-Webserver	137

11.3	PMX mit einem PC (HOST) oder über ein Netzwerk verbinden	138
11.3.1	Netzwerkeinstellungen über USB-Speicher setzen	143
11.3.2	Netzwerkeinstellungen über den Webbrowser ändern	145
11.4	Anzeige- und Bedienmöglichkeiten	146
11.5	Menüstruktur PMX-Webserver	150
11.5.1	Überblick über alle Geräteeinstellungen	150
11.5.2	Werkseinstellungen wieder herstellen	
11.6	Einschaltverhalten des PMX	152
11.7	Betriebsverhalten des PMX	153
11.8	Signallaufzeiten	153
11.9	Feldbusintegration	
11.9.1	PROFINET® IO-Verbindung	
11.9.2	EtherCAT®-Verbindung	
11.9.3	Einstellen der Feldbus-Aktualisierungsrate	
11.9.4	EtherNet/IP™-Verbindung	161
12	Schneller Einstieg	163
12.1	Messsystem vorbereiten	
12.2	Typischer Bedienablauf (Messbeispiel)	
12.3	Einmess-Assistent	
12.4	Firmware aktualisieren (PMX-Webserver)	
13	Interne Berechnungskanäle	176
13.1	Berechnungsrate	
13.1	Beschreibungen der Berechnungen	
13.2.1	Skalierung	
13.2.1	Zweipunktskalierung	
13.2.2	Kennlinientabelle (21 Stützpunkte)	
13.2.4	Polynom 4. Ordnung	
13.2.5	Tarieren	
13.2.6	6x6 Matrix	
13.2.7	DMS-Spannungsanalyse	
13.2.8	Auswertefunktionen	
13.2.9	Filter (IIR, Hochpass oder Tiefpass)	
13.2.10	Winkelsynchrones Filter (CASMA)	
13.2.11	Spitzenwerte (und Hüllkurve)	
13.2.12	Toleranzfenster	
13.2.13	Halten (analog getriggert)	
13.2.14	Halten (digital getriggert)	
13.2.15	, , ,	
	Mittelwert (arithmetisch, RMS)	193
13.2.16	Mittelwert (arithmetisch, RMS)	

13.2.17	Trigger (Bereich)	195
13.2.18	Triggerfunktion (Impuls)	196
13.2.19	Kontrollwaage (Checkweigher)	198
13.2.20	Mathematische Funktionen	202
13.2.21	Addierer / Subtrahierer	202
13.2.22	Multiplizierer	202
13.2.23	Dividierer	203
13.2.24	Zähler	203
13.2.25	Integrierer	204
13.2.26	Differenzierer	205
13.2.27	Kartesische zu Polarkoordinaten	206
13.2.28	Polarkoordinaten zu Kartesischen Koordinaten	206
13.2.29	Modulo-Funktion	207
13.2.30	Konstantsignal	207
13.2.31	Technologiefunktionen	207
13.2.32	Zweipunktregler	207
13.2.33	PID-Regler	208
13.2.34	RTD Pt100 an PX455	209
13.2.35	Signalgeneratoren (Rechteck, Dreieck, Sinus,)	210
13.2.36	Logik-Bausteine (UND, ODER)	211
13.2.37	Multiplexer 4:1	211
13.2.38	Totzone	212
13.2.39	Flankendetektor	213
13.2.40	Pulsbreitenmessung	213
13.2.41	Timer	215
13.2.42	Verbindungskanal mit (optionaler) Verzögerung (CODESYS)	216
13.2.43	Verarbeitung digitaler Signale	217
13.3	Beispiele zu Berechnungen	218
13.3.1	Spitzenwerterzeugung	218
13.3.2	Berechnung des Kraftangriffpunktes	220
13.3.3	Mechanische Arbeit über Kraft-Weg-Integration	227
13.3.4	Prüfung der Kraft an bestimmten Punkten auf der Wegachse	235
13.3.5	Kraft-Weg-Messung mit relativem Nullpunkt	238
13.3.6	Prüfung der Kraft mit einem Toleranzband	243
13.3.7	Ereigniszähler	249
14	Testsignale und Signalgeneratoren	253
15	Parametersätze (Rezepte)	
15.1	Einrichten von Parametersätzen	
15.2	Ändern von Parametern in Parametersätzen	257

15.3	Messprogramme (Parametersatze) speichern und laden	259
15.4	Gerätespeicher (Gerät klonen)	261
16	Kommunikation mit einem Steuerungssystem	263
16.1	Gerätebeschreibungsdatei	263
16.2	Einstellen der Übertragungsgeschwindigkeit des Feldbusses	266
16.3	Datenübertragung über Feldbus	266
16.4	Eingangsdaten PMX -> Steuerung (SPS)	266
16.4.1	Gerätedaten (zyklisch)	266
16.4.2	Systemstatus	267
16.4.3	Messwerte (zyklisch)	268
16.4.4	Messwertstatus	269
16.5	Ausgangsdaten Steuerung (SPS) PMX	270
16.5.1	Gerätedaten (zyklisch)	270
16.5.2	Messwert-Steuerworte (zyklisch)	272
16.5.3	Messwert-Steuerworte	273
16.5.4	Feldbuskanäle (CPU-Kanäle)	273
16.6	PROFINET® IO	274
16.7	EtherCAT®	277
16.8	Benutzung des PMX CoE Object Dictionary	279
16.9	EtherNet/IP™	282
16.9.1	Konfiguration	282
16.9.2	Kanaleinstellungen	283
16.9.3	Datenstruktur	284
17	CAN-Schnittstelle (nur WGX001)	293
17.1	Allgemein	293
17.2	CAN-Anschlussbelegung	293
17.3	CANopen Master/Slave-Betrieb	295
18	CODESYS-V3-Soft-SPS (nur WGX001)	297
18.1	Allgemein	
18.2	CODESYS-Entwicklungsumgebung	
18.3	Vorbereitung	299
18.4	Projekt anlegen	300
18.5	PMX-Bibliothek hinzufügen	301
18.6	PMX-Bibliothek	302
18.7	Taskkonfiguration	315
18.8	Zyklische Daten	315
18.9	Signallaufplan (I/O-Mapping)	316

18.10	Systemevents für PMX	318
18.10.1	All	318
18.10.2	com.hbm.fwconfig	318
18.10.3	com.hbm.parameter	319
18.10.4	com.hbm.fpgasrv	320
18.10.5	com.hbm.SysCfgMgr	321
18.10.6	com.hbm.storagemanager	326
18.10.7	com.hbm.sigproc	327
18.10.8	com.hbm.fieldbus	328
18.10.9	com.hbm.CatmanServer	328
18.10.10	com.hbm.meassrv	328
18.10.11	com.hbm.httpdata	328
18.10.12	GUI	329
18.10.13	com.hbm.DataLogger	329
18.11	WebVisualisierung	331
18.12	CAN-Schnittstelle	
18.13	CAN-Master- und -Slave-Betrieb	332
18.14	PMX-Package	345
19	Datenspeicherung	347
20	Messdatenerfassungssoftware catman	349
21	Befehlssatz des PMX	351
	Befehlssatz des PMX	351 351
21 21.1	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste	351 351 353
21 21.1	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV)	351 351 353 415
21 21.1 21.2	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte	351 351 353 415 415
21 21.1 21.2 22	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle	351 351 353 415 415 416
21 21.1 21.2 22 22.1	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle	351 353 415 416 418
21 21.1 21.2 22 22.1 22.1.1	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan	351 353 415 415 416 418 418
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2 22.2	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte	351 353 415 415 416 418 418 419
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte Messkanäle	351 353 415 415 416 418 418 419 419
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2 22.2	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte Messkanäle Berechnete Kanäle	351 353 415 415 416 418 418 419 420
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2 22.2.1 22.2.2 22.2.3 22.2.4	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte Messkanäle Berechnete Kanäle Konstante Signale	351 353 415 415 416 418 419 420 420 420
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2 22.2.1 22.2.2 22.2.3	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte Messkanäle Berechnete Kanäle Konstante Signale Passwörter	351 353 415 416 418 418 419 420 420 420
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2 22.2.1 22.2.2 22.2.3 22.2.4	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte Messkanäle Berechnete Kanäle Konstante Signale Passwörter Datentypen	351 353 415 416 418 419 420 420 420 421
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2 22.2.1 22.2.2 22.2.3 22.2.4 22.2.5	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte Messkanäle Berechnete Kanäle Konstante Signale Passwörter Datentypen Zugang über Ethernet-Befehlsschnittstelle	351 353 415 415 416 418 419 420 420 420 421 422
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2 22.2.1 22.2.2 22.2.3 22.2.4 22.2.5 22.3	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte Messkanäle Berechnete Kanäle Konstante Signale Passwörter Datentypen Zugang über Ethernet-Befehlsschnittstelle Zugang über Feldbus	351 351 353 415 416 418 419 420 420 421 422 423
21 21.1 21.2 22 22.1 22.1.1 22.1.2 22.2 22.2.1 22.2.2 22.2.3 22.2.4 22.2.5 22.3 22.4	Befehlssatz des PMX Voraussetzungen und Schreibweisen Befehlsliste Objektverzeichnis (OV) Zugängliche Datenobjekte Messkanäle Berechnete Kanäle Nummerierungsplan Allgemeine Objekte Messkanäle Berechnete Kanäle Konstante Signale Passwörter Datentypen Zugang über Ethernet-Befehlsschnittstelle	351 351 353 415 416 418 419 420 420 421 422 423

22.5.3	Die Antwort von PMX	426
22.5.4	Antwort auf eine Leseanfrage	427
22.5.5	Antwort auf eine Schreibanfrage	427
22.5.6	Erneuter Versuch	
22.6	Anwenden des neuen Werts	427
22.7	Generierte Header-Dateien	428
22.7.1	Wertebereiche der Objekte	429
22.8	Tipps zur Nutzung des Objektverzeichnisses	430
23	Qualitätsnachweise und Kalibrierscheine	431
24	Firmware-Aktualisierung (Update)	
24.1	Vorbereitung	
24.2	Firmware aufspielen	433
25	Diagnose und Wartung (Health-Monitoring)	
25.1	Fehlermeldungen / Betriebszustand (LED-Anzeige)	
25.2	Fehlermeldungen des Gerätestatus	
25.2.1	Fehler in den Werkseinstellungen	
25.2.2	SYNC-Master	
25.2.3	SYNC-Fehler	
25.2.4	SYNC-Regler-Fehler	
25.2.5	Herzschlag	441
25.2.6	Sensorspeisung überlastet	441
25.2.7	Pufferüberlauf in Befehlsschnittstelle	441
25.2.8	System nicht bereit	
25.2.9	CPU-Überlastung bei Berechnungen	
25.3	Zurücksetzen des PMX-Administrator-Passwortes	
25.4	Zurücksetzen des PMX auf Werkseinstellungen	443
25.5	Wiederherstellen von verlorenen PMX-Netzwerkeinstellungen und	444
25.6	Gerätenamen	444
25.6	Speichern und Wiederherstellen von PMX-Geräteeinstellungen und CODESYS-Applikationen	447
25.7	Austausch von Mess- und Kommunikationskarten	448
25.8	Logdatei	448
25.8.1	Systemlog-Einträge für Systemstatus	449
25.8.2	Systemlog-Einträge für Kanalstatus/ Messwertstatus	450

26	Entsorgung und Umweltschutz	451
27	FAQs	452
28	Technische Unterstützung	455
29	Glossar	456
Stichwo	rtverzeichnis	462

1 SICHERHEITSHINWEISE

Bestimmungsgemäße Verwendung

Das Messverstärkersystem PMX, im folgenden Gerät genannt, darf ausschließlich für Messaufgaben und direkt damit verbundene Steuerungsaufgaben im Rahmen der durch die technischen Daten spezifizierten Einsatzgrenzen verwendet werden. Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß.

Jede Person, die mit Aufstellung, Inbetriebnahme oder Betrieb des Gerätes beauftragt ist, muss die Bedienungsanleitung und insbesondere die sicherheitstechnischen Hinweise gelesen und verstanden haben.

Zur Gewährleistung eines sicheren Betriebes darf das Gerät nur von qualifiziertem Personal und nach den Angaben in der Bedienungsanleitung betrieben werden. Bei der Verwendung sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten. Sinngemäß gilt dies auch bei der Verwendung von Zubehör.

Hinweis

Das Gerät darf nicht unmittelbar an ein Gleichspannungsversorgungsnetz angeschlossen werden. Die Versorgungsspannung darf 10 V ... 30 V (DC) betragen.

Das Gerät darf nur mit einer Sicherheitskleinspannung (Sicherheitstrafo nach DIN VDE 0551 bzw. EN60742) versorgt werden. Einbaugeräte nur eingebaut im vorgesehenen Gehäuse betreiben. Die Geräteentwicklung orientiert sich an der DIN EN 61010-Teil1 (VDE 0411-Teil1).

Vergewissern Sie sich vor der Inbetriebnahme, dass Sie eine passende Versorgungsspannung verwenden und dass der benutzte Stromkreis genügend abgesichert ist.

Betriebsbedingungen

- Schützen Sie das Gerät vor direktem Kontakt mit Wasser.
- Schützen Sie das Gerät vor direkter Sonneneinstrahlung
- Schützen Sie das Gerät vor Feuchtigkeit und Witterungseinflüssen wie beispielsweise Regen oder Schnee. Die Schutzklasse des Gerätes ist IP20 (DIN EN 60529).
- Die zulässige relative Luftfeuchte bei 31 °C beträgt 95 % (nicht kondensierend); lineare Reduzierung bis 50 % bei 40 °C.
- Das PMX-System kann bis zu einer Höhe von 2000 m sicher betrieben werden.
- Das Gerät darf ohne unsere ausdrückliche Zustimmung weder konstruktiv noch sicherheitstechnisch verändert werden. Insbesondere sind jegliche Reparaturen, Lötarbeiten an den Platinen (Austausch von Bauteilen) untersagt. Bei Austausch gesamter Baugruppen sind nur Originalteile von HBM zu verwenden.

- Das Gerät wird ab Werk mit fester Hard- und Softwarekonfiguration ausgeliefert.
 Änderungen sind nur im Rahmen der in der zugehörigen Dokumentation aufgeführten Möglichkeiten zulässig.
- Das Gerät ist wartungsfrei.
- Beachten Sie bei der Reinigung des Gehäuses:
 - Trennen Sie das Gerät von allen Strom- bzw. Spannungsversorgungen.
 - Reinigen Sie das Gehäuse mit einem weichen und leicht angefeuchteten (nicht nassen!) Tuch. Verwenden Sie auf keinen Fall Lösungsmittel, da diese die Beschriftung oder das Gehäuse angreifen könnten.
 - Achten Sie beim Reinigen darauf, dass keine Flüssigkeit in das Gerät oder an die Anschlüsse gelangt.
- Nicht mehr gebrauchsfähige Geräte sind gemäß den nationalen und örtlichen Vorschriften für Umweltschutz und Rohstoffrückgewinnung getrennt von regulärem Hausmüll zu entsorgen, siehe auch Abschnitt 26 auf Seite 451.

Qualifiziertes Personal

Qualifizierte Personen sind Personen, die mit Aufstellung, Montage, Inbetriebsetzung und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechende Qualifikationen verfügen.

Dazu zählen Personen, die mindestens eine der drei folgenden Voraussetzungen erfüllen:

- Ihnen sind die Sicherheitskonzepte der Mess- und Automatisierungstechnik bekannt und sie sind als Projektpersonal damit vertraut.
- Sie sind Bedienpersonal der Mess- oder Automatisierungsanlagen und sind im Umgang mit den Anlagen unterwiesen. Sie sind mit der Bedienung der in dieser Dokumentation beschriebenen Geräte und Technologien vertraut.
- Sie sind Inbetriebnehmer oder für den Service eingesetzt und haben eine Ausbildung absolviert, die sie zur Reparatur der Automatisierungsanlagen befähigt.
 Außerdem haben sie die Berechtigung, Stromkreise und Geräte gemäß den Normen der Sicherheitstechnik in Betrieb zu nehmen, zu erden und zu kennzeichnen.

Sicherheitsbewußtes Arbeiten

- Fehlermeldungen dürfen nur quittiert werden, wenn die Ursache des Fehlers beseitigt ist und keine Gefahr mehr existiert.
- Wartungs- und Reparaturarbeiten am geöffneten Gerät unter Spannung dürfen nur von einer ausgebildeten Person durchgeführt werden, die sich der vorliegenden Gefahr bewusst ist.
- Geräte und Einrichtungen der Automatisierungstechnik müssen so verbaut werden, dass sie gegen unbeabsichtigte Betätigung ausreichend geschützt bzw. verriegelt sind (z. B. Zugangskontrolle, Passwortschutz o. Ä.).

- Bei Geräten, die in Netzwerken arbeiten, müssen hard- und softwareseitig Sicherheitsvorkehrungen getroffen werden, damit ein Leitungsbruch oder andere Unterbrechungen der Signalübertragung nicht zu undefinierten Zuständen oder Datenverlust in der Automatisierungseinrichtung führen.
- Stellen Sie nach Einstellungen und T\u00e4tigkeiten, die mit Passworten gesch\u00fctzt sind, sicher, dass evtl. angeschlossene Steuerungen in einem sicheren Zustand verbleiben, bis das Schaltverhalten des Ger\u00e4tes gepr\u00fcft ist.

Zusätzliche Sicherheitsvorkehrungen

Bei Anlagen, die aufgrund einer Fehlfunktion größere Schäden, Datenverlust oder sogar Personenschäden verursachen können, müssen zusätzliche Sicherheitsvorkehrungen getroffen werden, die den Anforderungen der entsprechenden nationalen und örtlichen Unfallverhütungsvorschriften genügen.

Der Leistungs- und Lieferumfang des Gerätes deckt nur einen Teilbereich der Messtechnik ab. Vor der Inbetriebnahme des Gerätes in einer Anlage ist daher eine Projektierung und Risikoanalyse vorzunehmen, die alle Sicherheitsaspekte der Mess- und Automatisierungstechnik berücksichtigt, so dass Restgefahren minimiert werden. Insbesonders betrifft dies den Personen- und Anlagenschutz. Im Fehlerfall müssen entsprechende Vorkehrungen einen sicheren Betriebszustand herstellen.

Allgemeine Gefahren bei Nichtbeachten der Sicherheitshinweise

Das Gerät entspricht dem Stand der Technik und ist betriebssicher. Von dem Gerät können Restgefahren ausgehen, wenn es von unsachgemäß eingesetzt oder bedient wird

Wichtig

Die Sicherheitshinweise werden dem Gerät auch in gedruckter Form beigelegt ("Dokumentation und Sicherheitshinweise PMX", A03260).

2.1 In dieser Anleitung verwendete Kennzeichnungen

Damit sie schnell und sicher mit Ihrem Produkt arbeiten können, enthält die Anleitung einheitliche Symbole und Markierungen die im folgenden erläutert werden.

Symbol	Bedeutung
Hinweis	Diese Kennzeichnung weist auf eine Situation hin, die – wenn die Sicherheitsbestimmungen nicht beachtet werden – Sachschäden zur Folge haben kann.
Wichtig	Diese Kennzeichnung weist auf <i>wichtige</i> Informationen zum Produkt oder zur Handhabung des Produktes hin.
Tipp	Diese Kennzeichnung weist auf Anwendungstipps oder andere für Sie nützliche Informationen hin.
Information	Diese Kennzeichnung weist auf Informationen zum Produkt oder zur Handhabung des Produktes hin.
•	Auflistung
	Sie werden zu einer Handlung aufgefordert (einzel- ner, unabhängiger Handlungsschritt)
1. 2. 	Führen Sie diese Handlungsschritte in der beschriebenen Reihenfolge durch.
Hervorhebung Siehe	Kursive Schrift kennzeichnet Hervorhebungen im Text und kennzeichnet Verweise auf Kapitel, Bilder oder externe Dokumente und Dateien.
Gerät -> Neu	Fette Schrift kennzeichnet Menüpunkte sowie Dia- log- und Fenstertitel in Programmoberflächen. Pfeile zwischen Menüpunkten kennzeichnen die Reihen- folge, in der Menüs und Untermenüs aufgerufen werden
Messrate	Fett-kursive Schrift kennzeichnet Eingaben und Eingabefelder in Programmoberflächen.

2.2 Auf dem Gerät angebrachte Symbole

Versorgungsspannung beachten

Das Symbol weist darauf hin, dass die Versorgungsspannung zwischen 10 und 30 V_{DC} liegen muss und Sie die Angaben in dieser Bedienungsanleitung nachlesen und berücksichtigen sollen.

CE-Kennzeichnung

Mit der CE-Kennzeichnung garantiert der Hersteller, dass sein Produkt den Anforderungen der relevanten EG-Richtlinien entspricht (die Konformitätserklärung finden Sie auf der Website von HBM (www.hbm.com) unter HBMdoc).

Gesetzlich vorgeschriebene Kennzeichnung zur Entsorgung

Nicht mehr gebrauchsfähige Altgeräte sind gemäß den nationalen und örtlichen Vorschriften für Umweltschutz und Rohstoffrückgewinnung getrennt von regulärem Hausmüll zu entsorgen. Siehe auch *Abschnitt 26, Seite 451*.

Kennzeichnung von Schadstoff-Grenzwerten (bei Lieferung nach China)

Gesetzlich vorgeschriebene Kennzeichnung für die Einhaltung von Schadstoff-Grenzwerten in elektronischen Geräten für die Lieferung nach China.

Kennzeichnung, wenn die Software CODESYS vorhanden ist

CODESYS ist eine Software-Plattform für speicherprogrammierte Steuerungen. Bei den Grundgehäusen WG001 ist die Lizenz für CODESYS bereits implementiert.

3 HINWEISE ZUR BENUTZUNG

Wichtig

Veraltete Dokumentation!

Wenn Sie einen veralteten Stand der vorliegenden sowie der im folgenden genannten Dokumentationen verwenden, kann dies zu fehlerhafter Montage und Bedienung des Produktes führen.

▶ Stellen Sie sicher, dass Sie stets die aktuelle Version aller Dokumentationen besitzen und verwenden. Die aktuelle Version der Dokumentation finden Sie unter https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

3.1 Anwendung dieser Anleitung

- Lesen Sie die Bedienungsanleitung gründlich und vollständig, bevor Sie das Gerät zum ersten Mal in Betrieb nehmen.
- ▶ Diese Bedienungsanleitung ist Teil des Produktes. Bewahren Sie sie so auf, dass sie jederzeit für alle Benutzer zugänglich ist.
- ► Falls Sie das Gerät an Dritte weitergeben, geben Sie es stets zusammen mit den erforderlichen Dokumentationen weiter.

Bei Verlust dieser Anleitung finden Sie die aktuelle Version auf unserer Website https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

Die Nichtbeachtung dieser Anleitung kann zu Personenschäden oder Schäden am Gerät führen.

Damit Sie die gewünschten Informationen schnell finden, enthält die Bedienungsanleitung ganz vorne ein Gesamtinhaltsverzeichnis.

Außerdem können Sie mit dem Index am Ende der Anleitung nach einzelnen Stichwörtern suchen.

3.2 Wissenswertes über die PMX-Dokumentation

Die Dokumentation des PMX-Messverstärkersystems besteht aus

- der vorliegenden Bedienungsanleitung im PDF-Format,
- einer gedruckten Kurzanleitung für die erste Inbetriebnahme,
- einer gedruckten Zusammenfassung der Sicherheitshinweise,
- den Technischen Daten (Datenblatt) im PDF-Format,
- einer Beschreibung der Funktionalitäten und der Bedienung in der Online-Hilfe des PMX-Webservers

Wichtig

Sie finden diese Dokumente immer aktuell auf unseren Internetseiten.

Unter https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/finden-sie:

- Weitere Informationen wie z.B. die Gerätebeschreibungsdateien für die Echtzeit-Ethernetkarten (PROFINET[®] IO, EtherCAT^{®1)}) oder EtherNet/IP™2),
- · Konfigurationsbeispiele,
- ein Video-Tutorial zu PMX.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Germany

²⁾ EtherNet/IP™ ist eine Marke der ODVA Inc. Weitere Informationen zu ODVA finden Sie unter http://www.odva.org.

4 PRODUKTBESCHREIBUNG PMX

Mit dem Kauf des PMX-Messverstärkersystems haben Sie sich für ein kompaktes, leistungsstarkes und variables Messsystem in hoher HBM-Qualität entschieden. Die Messrate beträgt für alle Mess- und Berechnungskanäle 19200 bzw. 38400 Messungen pro Sekunde. Damit erreicht das Gerät eine Gesamtverarbeitungsrate von ca. 400.000 Messwerten pro Sekunde.

Mit dem Messsystem lassen sich eine Vielzahl unterschiedlichster Mess-, Regelungsund Automatisierungsaufgaben lösen.

Anbindung an einen PC (HOST)

Das PMX-Messverstärkersystem wird über die Standard-Ethernet-Schnittstelle an einen PC angeschlossen und über den internen Webserver parametriert und bedient.

Die Anbindung an ein Automatisierungssystem können Sie über die digitalen und analogen Ein-/Ausgänge sowie über die Feldbusschnittstellen des PMX vornehmen. Das PMX kann daher leicht an eine Steuerung (SPS) oder ein übergeordnetes Automatisierungssystem angeschlossen werden.

Interne Berechnungskanäle

Das PMX verfügt serienmäßig über 32 interne Berechnungskanäle, die für Bewertungen und mathematische Berechnungen der Messsignale frei zur Verfügung stehen. Damit können Sie von Spitzenwerten bis zu PID-Reglern Automatisierungsaufgaben einfach und elegant realisieren.

Es stehen folgende Einschubkarten-Typen zur Verfügung:

PX401

- Die Messkarte PX401 bietet vier individuell konfigurierbare Strom- oder Spannungseingänge mit TEDS-Sensorerkennung.
- Eine hohe Genauigkeit ist garantiert, da alle Kanäle über einen eigenen AD-Wandler mit 24 Bit Auflösung verfügen. Außerdem können dadurch alle Kanäle absolut synchron erfasst werden.

PX455

- Für die Messung mit Dehnungsmessstreifen (DMS) steht die Messkarte PX455 mit ebenfalls vier Kanälen mit 24 Bit Auflösung und TEDS-Sensorerkennung zur Verfügung.
- Die Messkarte eignet sich für DMS sowohl in Halb- als auch in Vollbrückenschaltung sowie für induktive Aufnehmer in Halb- oder Vollbrückenschaltung, LVDT's, potenziometrische Sensoren und Pt100-Widerstandsthermometer.

PX460

Mit der Frequenzmesskarte PX460 können Sie Drehmomentmesswellen (Drehmoment, Drehzahl, Drehwinkel), Winkel-/Inkrementalencoder, SSI-, PWM-Sensoren betreiben oder eine Frequenzmessung bis 2 MHz vornehmen.

Kanal 1 und 3: Frequenzmessung (fest)

Kanal 2 und 4: Frequenz (digital/induktiv), Zähler, Encoder, SSI, PWM (einstellbar)

Folgende Messmodi stehen zur Verfügung:

- bis zu vier Drehmomentmesswellen (T10, T12, T40) zur Drehmoment- oder Drehzahlmessung (ohne Drehrichtungserkennung)
- oder zwei Messkanäle zur gleichzeitigen Messung von Drehzahl und Drehwinkel (mit Drehrichtungserkennung)
- oder ein Messkanal zur gleichzeitigen Messung von Drehzahl und Drehwinkel und Drehrichtung bzw. Referenzimpulserkennung
- oder jeweils zwei Winkel-/Inkrementalencoder, SSI-, PWM-Sensoren, magnetischen Aufnehmer oder Impulszähler
- oder vier Messkanäle zur Frequenzmessung bis 2 MHz inklusive zweimal Shuntkalibrierung und zweimal 1-Wire-TEDS (Sensorerkennung)

PX878

 Die Ein-/Ausgabekarte PX878 verfügt über insgesamt acht digitale Eingänge, acht digitale Ausgänge und fünf analoge Spannungsausgänge. Hierüber kann das PMX gesteuert oder auch mit einer nachgeschalteten Steuerung (SPS) betrieben werden. Alle realen oder berechneten Messsignale können frei den Ausgängen zugeordnet werden.

PX01EC, PX01PN und PX01EP

Diese Interfacekarten k\u00f6nnen optional best\u00fcckt werden und erm\u00f6glichen den Betrieb des PMX in einem Automatisierungssystem \u00fcber die Schnittstellen PROFINET\u00a8 IO, EtherCAT\u00a81) oder EtherNet/IP\u00e42). Es ist jeweils nur eine Variante einsetzbar.

Anschlusstechnik

Die Aufnehmer werden über Steckklemmen an die Messverstärker angeschlossen.

Es stehen standardmäßig Steckklemmen in Push-In-Technologie und optional in Schraubtechnik zur Verfügung. Beide Typen können bei Bedarf zum Schutz gegen Vertauschen mit den beigelegten Kodiersteckern kodiert werden.

- 1) EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Germany
- 2) EtherNet/IP™ ist eine Marke der ODVA Inc. Weitere Informationen zu ODVA finden Sie unter http://www.odva.org.

TEDS (Plug&Measure)

Die PMX-Messverstärker unterstützen TEDS (Transducer Electronic Data Sheet, IEEE1451.4). Die Aufnehmer werden beim Anschließen *automatisch erkannt* und die Messkanaleinstellungen automatisch vorgenommen. Dadurch werden Einrichtungszeiten und Fehlbedienungen effizient minimiert.

PMX-Webserver

Passend zu den Messkarten ist ein einfach zu bedienender, speziell auf PMX abgestimmter Webserver für Konfiguration, Datenaufnahme und Visualisierung im Gerät integriert. Damit gelangen Sie schnell zum Messergebnis und können die gemessenen Daten visualisieren und auch nachträglich anschauen.

PC-Software catman®Easy/AP

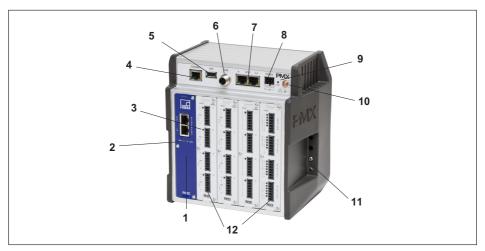
Optional können Sie die HBM-Software catman[®] zur Erfassung, Aufbereitung und Analyse der PMX-Messdaten nutzen. Damit lassen sich schnell große Mengen von Messdaten anzeigen (Linienschreiberfunktion), auswerten und in gängige Formate exportieren.

Software-Treiber

Zur Erstellung kundenspezifischer Applikationen steht Ihnen der PMX-Befehlssatz über eine .NET-API und den LabVIEW-Treiber zur Verfügung. Damit realisieren Sie eigene Bedienkonzepte und die Einbindung in vorhandene Softwarelösungen.

Mit dem HBM-LabVIEW-Treiber kann das PMX über Virtual Instruments (VI) in die Software von National Instruments eingebunden werden. Mit dem HBM-DIAdem-Treiber (ab Version 6) kann das PMX in die Messdatenerfassungssoftware DIAdem von National Instruments integriert werden. LabVIEW und DIAdem sind eingetragene Warenzeichen von National Instruments.

Geräteimplementierung


Die Multi-Client-Fähigkeit des PMX ermöglicht, dass über alle Schnittstellen – inklusive Webserver, Feldbus und Analogausgänge – gleichzeitig und ohne Geschwindigkeitsverluste auf das Gerät zugegriffen werden kann.

Kalibrierscheine

Dokumentierte Qualität: im Gerätespeicher des PMX sind bereits bei Auslieferung die HBM-Kalibrierscheine nach ISO 10012 der bestückten Messkarten und eine Werksbescheinigung 2.1 nach DIN EN 10204 als PDF-Dokumente abgelegt. Verwenden Sie den PMX-Webserver, um sie vom Gerät herunterzuladen. Außerdem können Sie die Dokumente auch von der HBM-Webseite https://www.hbm.com/de/6871/support-down-load-calibration-certificates/ herunterladen.

5.1 Das PMX-System

Bei dem PMX handelt es sich um ein modulares und universell einsetzbares Messverstärkersystem.

Nr	Bezeichnung
1	Kommunikationskarte: EtherCAT [®] , PROFINET [®] IO oder EtherNet/IP™
2	LEDs Feldbusstatus
3	LED Messkartenstatus
4	RJ45-Ethernet-Buchse zum PC/Netzwerk
5	USB-Host
6	CAN-Bus (nur WGX001)
7	2x RJ45-Buchsen zur Synchronisation von bis zu 20 Modulen
8	Spannungsversorgung 10 30 V
9	LED Systemstatus
10	Masse-Anschluss
11	Positionierung Tragschiene
12	max. 4 Messkarten bzw. Ein-Ausgabekarte, z.B.: PX455, PX460, PX878, PX401

Das PMX besteht aus

- · Grundgerät,
- · Messkarten,
- · Ein-/Ausgabekarten und
- Kommunikationskarten.

Die Messkarten, Ein- / Ausgabekarten und Kommunikationskarten können entsprechend der Messaufgabe individuell kombiniert und konfiguriert werden.

Grundgerät

Anschlüsse	Beschreibung
ETHERNET	Anschluss an Ethernet-Netzwerk oder PC, 100 MBit/s; Halb- und Vollduplex
USB	Gerätebackup, Datenspeicher und spezielle Gerätefunktionen
CAN	Lokale Verbindung zu CAN-Bus-Teilnehmer (nur bei WGX001)
SYNC	Synchronisation von bis zu 20 PMX-Geräten
POWER	Spannungsversorgung (10 30 V _{DC})

Messkarten

Messkarte	Beschreibung	Anschließbare Aufnehmer
PX401	Strom/Spannungs- messverstärker	4 Strom/Spannungsquellen, jeweils einzeln frei wählbar zwischen Strom- und Span- nungseingang, TEDS (1-Wire)
PX455	DMS-Messverstärker	4 DMS Voll-oder Halbbrücken (TF). Die Brückenspeisespannung beträgt 2,5 V; Induktive Voll- oder Halbbrücken, LVDT, potenziometrische Sensoren, Piezo- resistive Sensoren, Pt100-Widerstandsthermometer, TEDS (Zero-Wire)
PX460	Frequenz-/Zähler-messverstärker	 bis zu vier Drehmomentmesswellen (T10, T12, T40) zur Drehmoment- oder Drehzahlmessung (ohne Drehrichtungserkennung) oder zwei Messkanäle zur gleichzeitigen Messung von Drehzahl und Drehwinkel (mit Drehrichtungserkennung) oder ein Messkanal zur gleichzeitigen Messung von Drehzahl und Drehwinkel und Drehrichtung bzw. Referenzimpulserkennung oder jeweils zwei Winkel-/Inkrementalencoder, SSI-, PWM-Sensoren, magnetischen Aufnehmern oder Impulszählern oder vier Messkanäle zur Frequenzmessung bis 2 MHz inklusive zweimal Shuntkalibrierung und zweimal 1-Wire-TEDS (Sensorerkennung)

Ein-Ausgabekarten (I/O)

Grundgerät, Typ	Schnittstellen	Anschließbare Aufnehmer
PX878	I/O-Karte	8 digitale Eingänge, 8 digitale Ausgänge, 5 analoge Spannungsausgänge, alle indivi- duell konfigurierbar

Kommunikationskarten

Modul	Schnittstelle	Beschreibung
PX01EC	EtherCAT ^{®1)})-Modul	EtherCAT®-Slave
PX01PN	PROFINET® IO-Modul	PROFINET® RT/IRT-Device
PX01EP	EtherNet/IP ^{™2)})-Mo- dul	EtherNet/IP™-Kommunikationsadapter

¹⁾ EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizensiert durch die Beckhoff Automation GmbH, Deutschland

²⁾ EtherNet/IP™ ist eine Marke der ODVA Inc. Weitere Informationen zu ODVA finden Sie unter http://www.odva.org.

Übersicht Messkarten, Ein-Ausgabekarte

	Gehäuse		Einschubkarte						
	MCXQQ1	neton	PTAOT	97A55	P+480	978T8	PAOIPH	PADIEC	PADY
Kanalzahl (gesamt) Messrate (Samples/s) Bandbreite (Hz)		-	4 19200 3000	4 19200 2000	4	8/5/8	-	-	-
DMS-Vollbrücke				٠					
《 DMS-Halbbrücke				٠					
Induktive Vollbrücke				٠					
Induktive Halbbrücke				٠					
LVDT				٠					
Potenziometrischer Aufnehmer				٠					
Widerstandsthermometer Pt100				•2)					
Stromgespeister piezo- elektrischer Aufnehmer (IEPE)			• 1)						
Piezoresistive Vollbrücke				٠					
Analogeingang Spannung			•						
Analogeingang Strom			•						
U 5 analoge Ausgänge						•			
8 digitale Eingänge						•			
🕠 8 digitale Ausgänge						•			
Nr Frequenzmessung, Pulszählung					•				
Drehmoment/Drehzahl					•				
Inkrementalencoder					•				
Drehwinkel mit RefImpuls					•				
SSI-Encoder					•				
Induktive Drehgeber					•				
PWM					•				
Ether CAT.								•	
PROFU°							٠		
EtherNet/IP									•
CANopen	•								
(100)	•								

 $^{^{1)}\,}$ Für den Anschluss von IEPE-Aufnehmern wird ein Smart-Modul (1-EICP-B-2) benötigt $^{2)}\,$ In Verbindung mit 100 Ohm-Ergänzungswiderstand

5.2 Lieferumfang

Beschreibung	Bestell-Nr.
1 Grundgerät PMX, mit Set für Wandmontage (1 Wandhalter, 4 Schrauben, 4 Unterlegscheiben) und Set für Hutschienen- befestigung sowie 2 Leisten für die Kabelbefestigung mit Schrauben und Unterlegscheiben.	
mit CAN-Anschluss und CODESYS-V3 Soft-SPS	1-WGX001
ohne CAN-Anschluss und ohne CODESYS	1-WGX002
Für jede Messkarte: je ein Gegenstecker pro Kanal, alle Gegenstecker in Push-In-Technologie (Pro Messkarte liegen 4 Stecker inklusive Kodierstifte bei)	1-CON-S1008 1-CON-S1012 bei PX460
Hutschienenbefestigung (2 Stück, verpackt in Membranpolsterverpackung mit Befesti- gungsmaterial im Etimexbeutel) (4 Passschrauben M5x10, 4 Federscheiben)	1-RAILCLIP
PMX-Bedienungsanleitung und Datenblatt, Sicherheitshin- weisen und Kurzanleitung	
Bei WGX001: Lieferung mit CODESYS-CD (CODESYS-V3-Software, PMX-Package Kurzanleitung und Programmbeispiele)	
Gegenstecker M12x1 für CAN-Schnittstelle bei WGX001	1-CON-S1002
Gegenstecker für PMX-Spannungsversorgung (WGX001 / WGX002)	1-CON-S1010

5.3 Zubehör

Zubehör	Bestell-Nr.
Ethernet-Cross-Over-Kabel, zum direkten Betrieb von Geräten an einem PC oder Notebook, Länge 2 m, Typ Cat 5+	1-KAB239-2
AC/DC-Steckernetzteil; Eingang: 90 V \dots 264 V _{AC} , 1,5 m Kabel, Ausgang: 24 V _{DC} , max. 1,25 A, 2 m Kabel mit ODU-Stecker	1-NTX001
Anschlussschelle ME-SAS MINI - 2200456 von PHOENIX zur Zug- entlastung des Aufnehmerkabels	1-CON-A1023

Ersatzteile	Bestell-Nr.
PX01, PMX Blindplatte blau für Einschubkartenplatz Slot 0	1-PX01
PX02, PMX Blindplatte grau für Einschubkartenplatz Slot 1-4	1-PX02
RAILCLIP, PMX Hutschienenbefestigungssatz (2 Stück) inkl. Schrauben	1-RAILCLIP
Phoenix Steckklemmen	
Set Steckklemmen (Push-In) für PMX-Einsteckkarten (4 Stück 7-polig, inkl. Kodierstecker und Beschriftungsbögen)	1-CON-S1008
Set Schraubklemme für PMX-Spannungsversorgung (1 Stück 2-polig, inkl. Kodierstecker und Beschriftungsbögen)	1-CON-S1010
Set Steckklemmen (Push-In) für PMX-Einsteckkarten (je 2 Stück 13 und 2-polig, inkl. Kodierstecker und Beschriftungsbö-	1-CON-S1012
gen)	1-CON-S1002
Gegenstecker M12x1 für CAN-Schnittstelle bei WGX001	

Generell sind bei allen Einschubkarten (PX401, PX455, PX460, PX878) immer die Gegenstecker beigelegt.

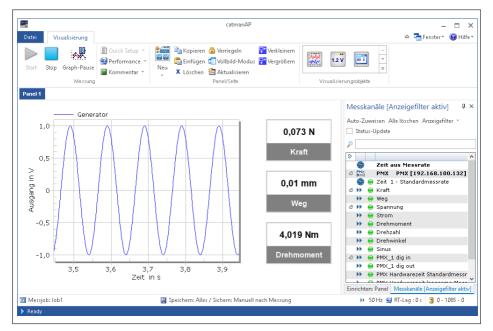
Bei Bestellungen eines PMX-Grundgerätes sind Hutschienenbefestigung und Wandbefestigungselement immer im Lieferumfang enthalten.

Wichtig

Alle Mess-, Ein- und Ausgabekarten sowie Kommunikationskarten können optional nachgerüstet oder zurückgebaut werden.

5.4 PMX-Webserver und Software

Ein PMX-Webserver inklusive Hilfe ist im Gerät integriert. Der Webserver verfügt auch über eine Funktion, mit der neue PMX-Firmware und Webserverversionen in das PMX übertragen werden können.



Der Webserver verfügt über eine integrierte Hilfe zur Bedienung und Handhabung des PMX (klicken Sie auf das Hilfesymbol rechts oben im Übersichtsmenü).

PC-Software catman®Easy/AP

Optional können Sie die HBM-Software catman[®] zur Erfassung, Aufbereitung und Analyse der PMX-Messdaten nutzen. Damit lassen sich schnell große Mengen von Messdaten anzeigen (Linienschreiberfunktion), auswerten und in gängige Formate exportieren (siehe folgende Abbildung).

Alle realen und die berechneten Messkanäle sowie die Digitalein- und Digitalausgänge werden gemessen. Digitalein- und ausgänge werden als binär kodierter Wert dargestellt.

Das PMX unterstützt dabei bis zu drei Messraten, die unabhängig voneinander eingestellt werden können. Diese Messraten können dann einzelnen Messignalen zugeordnet werden.

Zum Starten und Stoppen (Triggern) einer Messung können Sie Tageszeiten, Digitalein- oder Digitalausgänge des PMX oder das Auslösen über Grenzwerte in catman[®] nutzen.

Mit catman® lässt sich das PMX zumindest teilweise parametrieren. Dazu zählen:

- Sensortyp einstellen, über die Sensordatenbank oder mittels TEDS
- Beschreiben der TEDS-Sensoren mittels in catman[®] integriertem TEDS-EDITOR
- Nullstellen des Messsignals und Einstellen der Filterfrequenz für jeden einzelnen Kanal

Über die Programmiersprache catman[®] Script können Sie komplette Messabläufe bis hin zur automatisierten Messdatenspeicherung und Protokoll-Erstellung programmieren.

Weitere Informationen finden Sie in der Onlinehilfe von catman®Easy/AP.

Wichtig

Die PMX-Geräteeinstellung werden nach Beenden von catman[®] dauerhaft im aktiven Parametersatz des PMX gespeichert. catman[®] verändert die Sensoreinstellungen (Sensortyp, Skalierung, Filter) selbsttätig im PMX.

Bevor Sie catman[®] starten, aktivieren Sie das Beibehalten der PMX-Filtereinstellung im Dialog Neues Messprojekt vorbereiten: Bei einem neuen Messprojekt die eingestellten Messraten und Filter der Geräte nicht verändern.

Software-Treiber

Zur Erstellung kundenspezifischer Applikationen steht Ihnen der PMX-Befehlssatz über eine .NET-API und den LabVIEW-Treiber zur Verfügung. Damit realisieren Sie eigene Bedienkonzepte und die Einbindung in vorhandene Softwarelösungen.

Mit dem HBM-LabVIEW-Treiber kann das PMX über Virtual Instruments (VI) in die Software von National Instruments eingebunden werden. Mit dem HBM-DIAdem-Treiber (ab Version 6) kann das PMX in die Messdatenerfassungssoftware DIAdem von National Instruments integriert werden. LabVIEW und DIAdem sind eingetragene Warenzeichen von National Instruments

Folgende Funktionen im PMX werden von den Treibern unterstützt:

Funktion	Beschreibung
Geräte-Scan	Scannen des Ethernet-Netzwerks
Messkonfiguration	Setzen von Abtastrate, Filter, Nullpunkt
Sensorkonfiguration	Einstellen der Skalierung (2-Punkt) oder über TEDS
Analogeingang der Datenerfassung und berechnete Kanäle (Streaming)	Lesen aller Messwerte und Zeitstempel von Sensoren und Kanälen
Statusinformation (Diagnose)	Lesen jedes Kanal- und Gerätestatus
Spitzenwerte	Lesen oder Löschen von Spitzenwerten
Grenzwertschalter	Lesen oder Setzen von Grenzwertschaltern
Analogausgang (direkte Einstellung)	Lesen oder Setzen von Analogausgängen (10 V)
Analogausgang (Konfiguration)	Einstellen von Quelle, Skalierung
Digitaleingang der Datenerfassung	Lesen und Setzen von Digitaleingängen (High/Low)
Digitalausgang der Datenerfassung (direkte Einstellung)	Lesen und Setzen von Digitalausgängen (High/Low)

Funktion	Beschreibung
CAN-Datenerfassung (über CODE- SYS / berechnete Kanäle)	Lesen berechneter Kanäle mit CAN-Signalen
Parametersätze	Lesen und Auswählen von Parametersätzen

Information

Ab der Firmware-Version 2.00 werden jeweils die Treiberversionen 2.0 oder höher benötigt.

Tipp

Alle Befehle des PMX-Befehlssatzes können als Low-level-Befehle benutzt werden (siehe Kapitel 21, "Befehlssatz des PMX", Seite 351).

Ausführliche Unterstützung und Programmierbeispiele finden Sie in der Programmhilfe der einzelnen Treiber.

Alle Treiber und auch die catman®-Software können Sie als kostenlose 30-Tage-Version von der HBM Website herunterladen: https://www.hbm.com/

6 SCHUTZART / GEHÄUSE / SCHIRMUNGSKONZEPT

Die in den technischen Daten angegebene Schutzart gibt die Eignung des Gerätes für verschiedene Umgebungsbedingungen an und zusätzlich den Schutz von Menschen gegen potentielle Gefährdung bei deren Benutzung. Den in der Schutzartbezeichnung immer vorhandenen Buchstaben *IP* (International Protection) wird eine zweistellige Zahl angehängt. Diese zeigt an, welchen Schutzumfang ein Gehäuse bezüglich Berührung bzw. Fremdkörper (erste Ziffer) und Feuchtigkeit (zweite Ziffer) bietet.

Alle PMX-Einschübe und das Grundgerät sind in Schutzart IP20 (nach EN 60529) ausgeführt.

Kennzifferindex	Schutzumfang gegen Be- rührung und Fremdkörper	Kennzifferindex	Schutzumfang gegen Wasser
2	Schutz gegen Berührung mit den Fingern, Schutz	0	Kein Wasser- schutz

0

Schirmungskonzept Greenline

2

 $\varnothing > 12 \text{ mm}$

gegen Fremdkörper mit

Für eine Verbesserung des Schutzes vor elektromagnetischen Störungen hat HBM das Schirmungskonzept *Greenline* entwickelt. Die komplette Messkette wird dabei durch die Führung des Kabelschirmes von einem Faradayschen Käfig vollständig umschlossen. Verbinden Sie bei doppelt geschirmten Sensorleitungen die Schirme indem Sie sie zusammen auflegen.

Hinweis

IP

Beachten Sie die maximalen Leitungslängen und je nach Verstärkertyp und Leitungslänge die eventuell anzubringenden Ergänzungswiderstände. Siehe Abschnitt 8.4. Messkarten / Aufnehmeranschluss. Seite 63.

6.1 Montage im Schaltschrank

Legen Sie die Kabelschirme direkt am Schaltschrankeingang auf eine Erdungsschiene auf und führen Sie die Sensorleitungen möglichst kurz zum PMX (*Abb. 6.1*). Legen Sie das PMX über die Erdungsklemme am PMX-Gehäuse ebenfalls auf die Erdungsschiene auf (*Abb. 6.2*) und erden Sie Schaltschrank und Erdungsschiene.

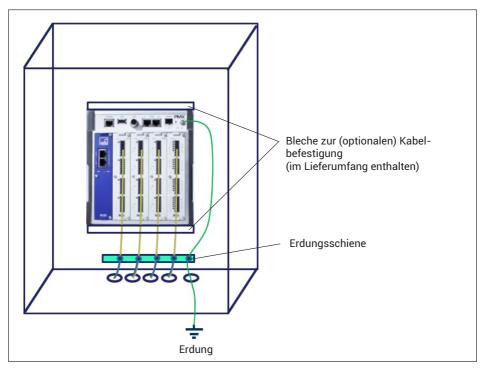


Abb. 6.1 Montage im Schaltschrank mit Erdungsschiene

Abb. 6.2 Erdungsklemme am PMX-Gehäuse

6.2 Freie Montage

Legen Sie die Kabelschirme auf den Schirmanschluss der PMX-Anschlussklemmen . Verwenden Sie nach Möglichkeit Litze und isolieren Sie die Übergangsstelle von Schirm auf die Anschlusslitze, z. B. mit einem Schrumpfschlauch (*Abb. 6.3*). Achten Sie darauf, dass die Sensorleitungen nach dem Schirm bis zum Stecker möglichst kurz bleiben.

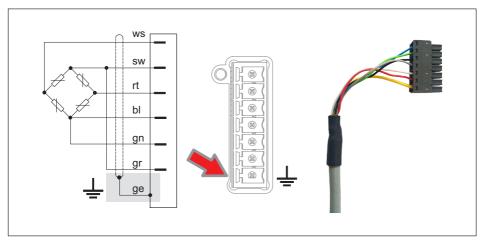


Abb. 6.3 Schirmanschluss; rechts: Schirm (gelbes Kabel) an unterer Klemme

Sie können z. B. auch die Anschlussschelle ME-SAS MINI - 2200456 von PHOENIX 1-CON-A1023 verwenden, die gleichzeitig eine Zugentlastung für das Sensorkabel bietet (*Abb. 6.4*). Montieren Sie die Anschlussschelle mit dem Metallbügel in den unteren Anschluss des Steckers.

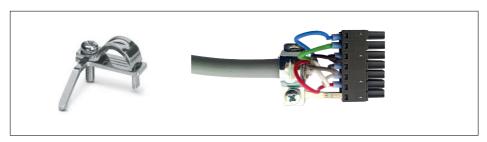


Abb. 6.4 Schirmanschlussschelle; rechts mit montiertem Kabel

Sie können eine Zugentlastung auch über die im Lieferumfang enthaltenen Bleche für die Kabelbefestigung oben oder unten an der PMX erreichen (Abb. 6.5).

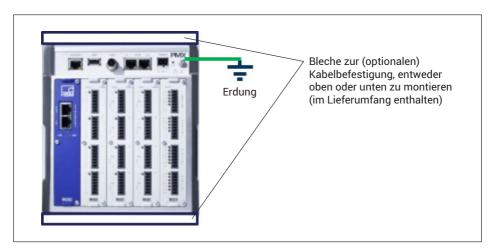


Abb. 6.5 Erdung und Zugentlastung für Kabel

7 MONTAGE/DEMONTAGE/AUSTAUSCH

7.1 Montagewerkzeuge und Anzugsmomente

Montage	Benötigtes Werkzeug	Anzugsmoment
Rail-Clip an der Hutschiene befestigen Inbusschraube M5	Inbusschlüssel SW 2,5	1,0 1,2 Nm
Tragschienenbefestigung am Gehäuse befestigen Inbusschraube M5	Inbusschlüssel SW 3	3 Nm
Einschubkarte befestigen Torxschrauben M2,5	Torx-Schraubendreher TX8	0,5 0,6 Nm
Wandhalter befestigen Inbusschraube M4	Inbusschlüssel SW 3	1,5 2 Nm
Seitenteile befestigen Torxschrauben M3	Torx-Schraubendreher TX10	0,8 1 Nm
Erdungsschraube am PMX Torxschrauben M4	Torx-Schraubendreher TX20	1,5 2 Nm
Bleche für Kabelbefestigung Inbusschrauben M4	Inbusschlüssel SW 3	1,5 2 Nm

7.2 Tragschiene montieren

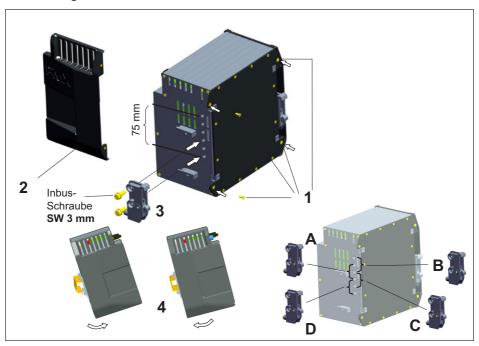
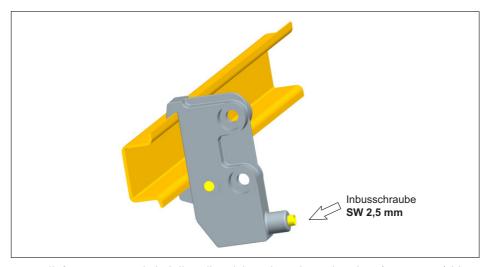


Abb. 7.1 Montieren auf eine Tragschiene


- 1. Lösen Sie die vier Rückwandschrauben (Torx Tx10) (1).
- 2. Schieben Sie die Seitenteile nach vorne (2).
- 3. Schrauben Sie die Tragschienenbefestigung (3) an (ca. 5 Nm), wahlweise sind vier Positionen (A bis D) möglich (zwei Positionen bei Tragschiene 7,5 mm).
- 4. Schrauben Sie die Seitenwände (2) wieder an.
- 5. Haken Sie das PMX in die Tragschiene (4) ein.

Hinweis

Geräteschaden durch Sturz des PMX wegen schwergängigem Ein-/Aushaken des PMX.

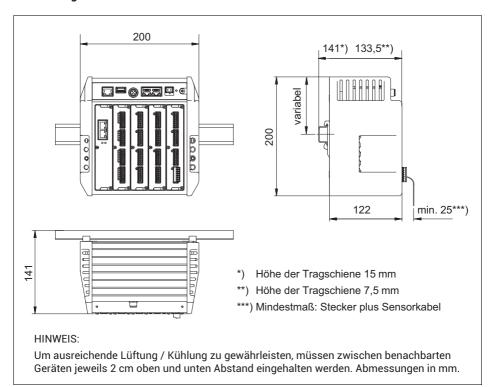
HBM empfiehlt die Verwendung einer DIN-Tragschiene (DIN EN 60715) mit einer Höhe von 15 mm. Bei Verwendung einer kleineren Tragschiene (Höhe 7,5 mm) sollte diese unterfüttert werden, um ein leichtes Ein-/Aushaken des PMX zu ermöglichen. Die Tragschiene 7,5 mm ist nur in den beiden oberen Positionen (A und B) verwendbar.

Tragschienenbefestigung (Rail-Clip) an Hutschiene befestigen

Im Auslieferungszustand sind die selbstsichernden Inbusschrauben (SW 2,5 mm) bis zum Anschlag herausgedreht.

- Klemmen Sie die Tragschienenbefestigung (Rail-Clip) an.
- Ziehen Sie die selbstsichernde Inbusschraube handfest an.

Hinweis


Geräteschaden durch elektromagnetische Einstrahlung in Fremdgeräte, fehlerhafte Messungen durch elektromagnetische Einstrahlung anderer Geräte.

Um eine ausreichende Erdung des PMX sicherzustellen, muss die Tragschiene auf Funktionserde \perp liegen.

An der Montagestelle muss sowohl die Tragschiene als auch das PMX lack- und schmutzfrei sein.

Schließen Sie über die Erdungsschraube das PMX-Gehäuse an Erde an.

Abmessungen und Einbauhinweise

7.3 Wandhalter montieren

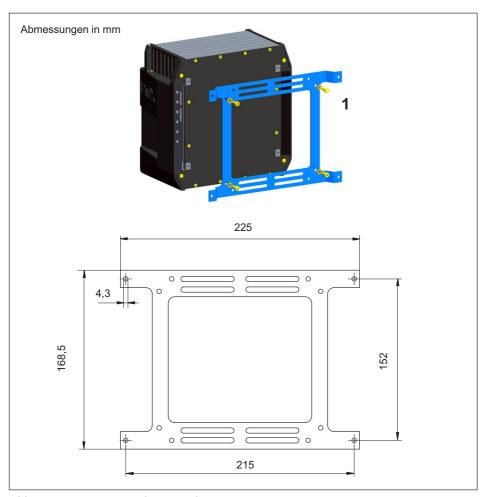
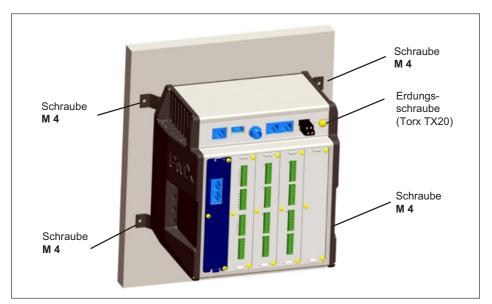
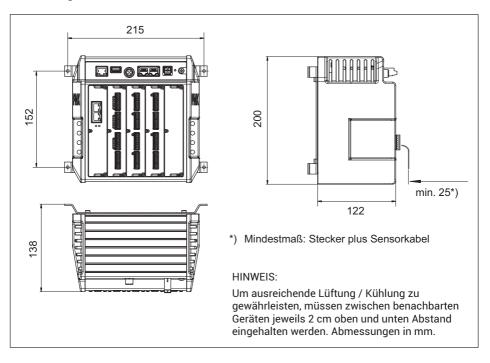



Abb. 7.2 Montage an einer Wand

1. Befestigen Sie den Wandhalter an der Rückseite des PMX mit beiliegenden Schrauben M4 (1).


2. Schrauben Sie die komplette Einheit an die Wand. Der Loch-Ø beträgt 4 mm.

Hinweis

Geräteschaden durch elektromagnetische Einstrahlung in Fremdgeräte, fehlerhafte Messungen durch elektromagnetische Einstrahlung anderer Geräte. Auch bei Wandmontage muss das Gehäuse auf Funktionserde \perp liegen.

Schließen Sie über die Erdungsschraube das PMX-Gehäuse an Erde an.

Abmessungen und Einbauhinweise

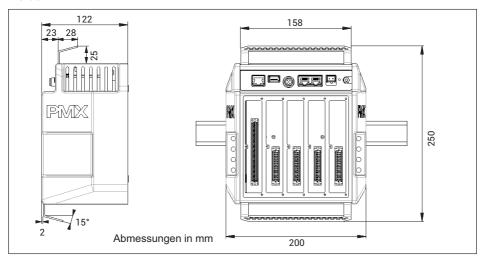

7.4 Montage der Bleche für Kabelbefestigung (optional)

Abb. 7.3 PMX mit Kabelhalterung

Damit Kabel vom und zum PMX hin sicher und stabil befestigt werden können, kann am PMX-Grundgerät optional oben und unten ein Blech zur Kabelbefestigung, mit jeweils 2 Inbusschrauben M4, montiert werden.

An den darin enthaltenen Löchern können über Kabelverbinder die Kabel befestigt werden.

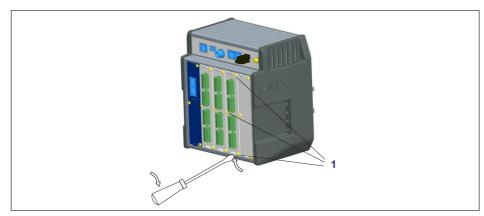
7.5 Mess- und Kommunikationskarten austauschen

Mess- und Kommunikationskarten können nachgerüstet oder entnommen werden. Bitte beachten Sie die Kombinationsmöglichkeiten (siehe *Seite 50*).

Nach dem Umbau und Einschalten der Versorgungsspannung erkennt und initialisiert das PMX die Hardware-Konfiguration automatisch. Es werden die Werkseinstellungen geladen. Alle Parameter, auch für die vorhandenen Karten, müssen neu eingegeben werden.

aaiT

Erstellen Sie sicherheitshalber ein Backup der Parametersätze auf ihren PC. Nutzen Sie den kostenlosen Parameter-Set-Reader für PMX (von der PMX-Website herunterladen), um die Geräteeinstellung in eine lesbare TXT-Datei zu wandeln.


Hinweis

Bei unsachgemäßen Ausbau/Tausch von Mess- oder Kommunikationskarten können diese beschädigt / zerstört werden.

Ein Ausbau/Tausch dieser Karten darf nur **spannungslos** erfolgen

Trennen Sie vor dem Ausbau einer Karte das PMX immer von der Stromversorgung. Beachten Sie, dass Geräteeinstellungen bei neu hinzukommenden Karten neu parametriert werden müssen.

Ausbau

- 1. Lösen Sie die drei Schrauben M2,5x8 Torx (Tx8) (1) der Karte/Blindplatte.
- 2. Hebeln Sie die Karte mit einem Schraubendreher an der vorgesehenen Nase leicht an.

3. Ziehen Sie die Platte vorsichtig heraus.

Einbau

- Führen Sie die Platte vorsichtig in den PMX-Slot ein (Stege verhindern ein Verkanten).
- 2. Die Platte zentriert sich in der rückseitigen VG-Leiste.
- 3. Ziehen Sie die drei M2.5-Schrauben wieder fest.

Hinweis

Geräteschaden durch elektromagnetische Einstrahlung in Fremdgeräte, fehlerhafte Messungen durch elektromagnetische Einstrahlung anderer Geräte.

Verschließen Sie die offenen Einschubplätze mit Blindplatten (Zubehör).

8.1 Steckertechnologie und Klemmbereiche

Alle PMX-Einschubkarten (PX401, PX455, PX460, PX878) werden serienmäßig mit montagefreundlichen Steckklemmen in Push-In Technologie ausgeliefert. Sie können jedoch die passende Ausführung mit Steckklemmen in Schraubtechnik bei Phoenix Contact erhalten (www.phoenixcontact.com, BK = schwarze Ausführung), z. B.:

- MC 1,5/2-ST-3,5 BK für die Spannungsversorgung bei PX460,
- MC 1,5/7-ST-3,5 BK für den Anschluss von Sensoren an PX401 und PX455 sowie für die digitalen Ein- und Ausgänge bei PX878,
- MC 1.5/13-ST-3.5 BK für den Anschluss bei PX460.

Weitere Ausführungen, z. B. mit Verriegelungsbügel, sind ebenfalls bei Phoenix Contact erhältlich, z. B. MCVW 1,5/..., MCVR 1,5/..., FK-MCP 1,5/...

Push-In-Technologie

Der Klemmbereich beträgt 0,2 mm² (AWG24) bis 1,5 mm² (AWG16). Falls Sie mehrere Leiter auf eine Klemme legen müssen, passen Sie die Leitungsguerschnitte entsprechend an. Verwenden Sie zum Anschluss der Adern an die Klemmen nach Möglichkeit Aderendhülsen 10 mm (ohne Kunststoffkragen).

Hinweis

Die Steckklemmen sind ab Werk nicht vertauschungssicher. Je nach Sensortyp kann ein Vertauschen der Stecker zur Beschädigung der Einschubkarte führen. Verwenden Sie die beiliegenden Kodierstifte, um ein Vertauschen zu verhindern.

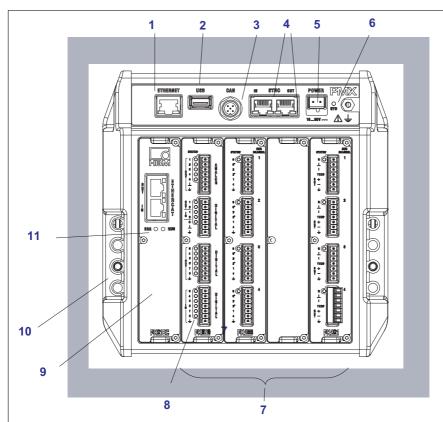
Die Steckklemmen können mit Kodierstiften gegen Vertauschen geschützt werden. Stecken Sie dazu einen Kodierstift in einen der Schlitze in den Gerätebuchsen vollständig ein und brechen Sie ihn von der Halterung ab, siehe Abb. 8.1. Verwenden Sie für jede Steckklemme bzw. jeden Aufnehmertyp einen anderen Schlitz. Sie können auch mehr als einen Kodierstift für eine Steckklemme verwenden.

Abb. 8.1 Kodierstift zu 90% eingesteckt

Entfernen Sie die Nase des entsprechenden Anschlusses an der Steckklemme, z. B. mit einem Messer (Abb. 8.2).

Abb. 8.2 Nase (Pfeil) an einer Steckklemme (Ausschnitt)

Legen Sie den Schirm des Aufnehmerkabels entsprechend den HBM-Greenline-Informationen https://www.hbm.com/Greenline auf den vorgesehenen Masseanschluss der PMX-Steckerleiste auf.

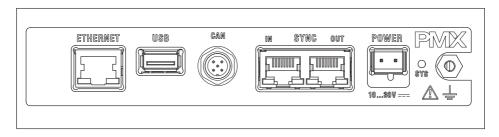


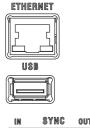
Wichtig

□ Die Erdungsklemme am PMX ist keine Schutzerde (Anschluss optional).

Das Messsystem ist mit einer automatischen Strombegrenzung pro Gerätekarte und für das PMX-Grundgerät ausgerüstet.

8.2 Funktionsübersicht PMX


- 1 Ethernet-Stecker für PC/Netzwerk-Anschluss
- 2 USB-Host, z. B. für Memo-Stick
- 3 CAN für CAN-Treiber, M12, Option (WGX001)
- 4 2 x RJ45 zur Synchronisation
- 5 Speisung 10 ... 30 V_{DC}
- 6 Gerätestatus-LED

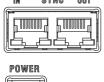

- 7 Messkarten (PX401, PX455, PX460) und/ oder Ein-/Ausgabekarte PX878 oder Blindplatte
- 8 Messkartenstatus-LED
- 9 Kommunikationskarten: PX01EC (EtherCAT®), PX01PN (PROFINET® IO, PC01EP EtherNet/IP™) oder Blindplatte
- 10 Positionierung Hutschiene
- 11 Feldbus-LED

8.2.1 Kombinationsmöglichkeiten der Einschubkarten

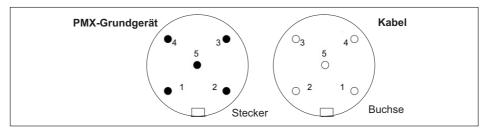
Steck- platz 0	Steck- platz 1	Steck- platz 2	Steck- platz 3	Steck- platz 4	Steck- bare Anzahl
х	-	-	-	-	0 - 1
-	Х	Х	Х	Х	0 - 4
-	Х	Х	Х	Х	0 - 4
-	х	х	х	х	0 - 4
-	Х	Х	-	-	0 - 2

8.2.2 Bedeutung der Anschlussbuchsen des Grundgerätes

PC- oder Netzwerkanschluss.


Kabel: Ethernet-Kabel Cat 5, SFTP

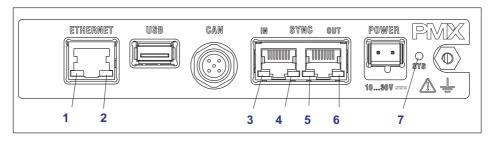
USB-Anschluss Version 2.0 für z. B. Massenspeicher, Scanner, USB-Speicher


Kabel: handelsübliches USB-Kabel

Synchronisation mehrerer (maximal 20) PMX über zwei RJ45-Buchsen, siehe *Abschnitt 8.1*,

"Steckertechnologie und Klemmbereiche", Seite 47.

Spannungsversorgung des PMX durch Anschluss eines separaten Gleichspannungsnetzteils.


CAN-Anschluss (nur für Typ WGX001)

Pin	Signal	Beschreibung
1	SHLD	CAN-Schirmung
2		Nicht angeschlossen
3	GND	Masse
4	CAN_H	CAN_H Datenleitung (high)
5	CAN_L	CAN_L Datenleitung (low)

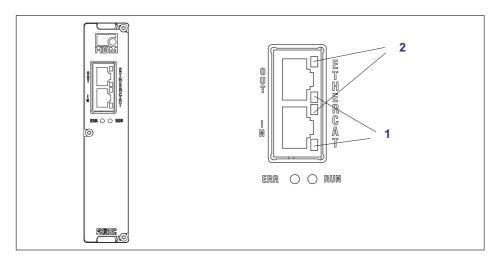
8.2.3 LEDs zur Systemkontrolle (Geräte-LED)

Grundgerät (WGX001/002)

ETHERNET-LED (1, 2)

LED	LED	Zustand	Bedeutung
Ethernet Link (1)	grün	Dauerhaft	Verbindung ist vorhanden
Ethernet RX / TX (2)	 gelb	Blinkend	Daten werden übertragen

SYNC IN / OUT (3, 4 und 5, 6)


LED	LED	Zustand	Bedeutung
IN (3)	grün	Ein	Slave
IN (4)	gelb	Ein	Fehler
IN (3 + 4)		Aus	Master
OUT (5)	grün	Ein	Immer an
OUT (6)	 gelb	Ein	Fehler (immer identisch mit rechter LED von Buchse IN)

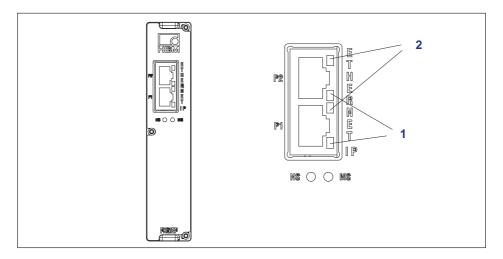
SYS-LED (7)

LED	Zustand	Bedeutung
grün	Ein Aus	Spannungsversorgung vorhanden Spannungsversorgung fehlt
gelb	Ein Blinkend	Gerät bootet Werkseinstellungen nicht OK
rot	Blinkend Ein	Interner schwerer Fehler Firmwareaktualisierung

8.2.4 Feldbus-LEDs

PX01EC53

EtherCAT®


LED	LED	Zustand	Bedeutung
ERR	rot	Aus	Kein Fehler
	rot	Blinkend	Konfigurationsfehler
	rot	Einfach-Blitz	Synchronisationsfehler
	rot	Doppel-Blitz	Application-Timeout-Fehler
	rot	Ein	PDI-Timeout-Fehler

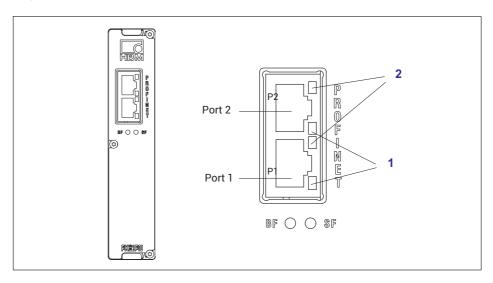
LED	LED	Zustand	Bedeutung
RUN	• grün	Aus	Zustand INIT
	• grün	Blinkend	Zustand PRE-OPERATIONAL

LED	LED	Zustand	Bedeutung
	● grün	Einfach-Blitz	Zustand SAFE OPERATIONAL
	grün	Ein	OPERATIONAL

LED	LED	Zustand	Bedeutung
		Dauerhaft ein	Verbindung aufgebaut
1	grün	Blinkend	Senden / Empfangen
		Aus	Keine Verbindung
2	-	-	Keine Funktion

PX01EP

EtherNet/IP™

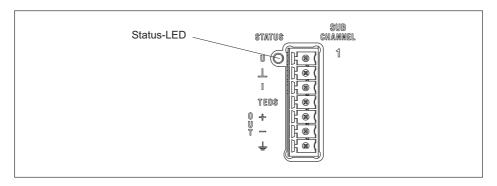

LED	LED	Zustand	Bedeutung
NS	grün	Ein	Verbunden: Wenn das Gerät mindestens eine bestehende Verbindung hat (auch zum Nachrichten-Router), leuchtet die Netzwerkstatusanzeige kontinuierlich grün.
	● grün	Blinkend	Keine Verbindungen: Wenn das Gerät keine bestehenden Verbindungen hat, aber eine IP-Adresse erhalten hat, blinkt die Netzwerkstatusanzeige grün.
	rot	Ein	Doppelte IP*: Wenn das Gerät festge- stellt hat, dass seine IP-Adresse schon verwendet wird, leuchtet die Netzwerk- statusanzeige kontinuierlich rot.
	rot	Blinkend	Time-out der Verbindung: Wenn sich eine oder mehrere der Verbindungen zu diesem Gerät im Time-out befinden, blinkt die Netzwerkstatusanzeige rot. Dieser Status wird erst beendet, wenn sich alle im Time-out befindenden Verbindungen wiederhergestellt wurden oder wenn das Gerät zurückgesetzt wurde.
	o rot grün	Blinkend	Selbsttest: Während das Gerät seinen Selbsttest durchläuft, blinkt die Netz- werkstatusanzeige grün/rot.
	-	Aus	Nicht eingeschaltet, keine IP-Adresse: Wenn das Gerät keine IP-Adresse hat (oder ausgeschaltet ist), leuchtet die Netzwerkstatusanzeige nicht.

LED	LED	Zustand	Bedeutung
MS	● grün	Ein	Gerät betriebsbereit: Wenn das Gerät in Betrieb ist und korrekt läuft, leuchtet die Netzwerkstatusanzeige kontinuierlich grün.
	• grün	Blinkend	Standby: Wenn das Gerät nicht konfigu- riert wurde, blinkt die Modulstatusanzeige grün.

LED	LED	Zustand	Bedeutung
	rot	Blinkend	Schwerer Fehler: Wenn das Gerät einen nicht behebbaren schweren Fehler fest- gestellt hat, leuchtet die Modulstatus- anzeige kontinuierlich rot.
	rot	Blinkend	Einfacher Fehler*: Wenn das Gerät einen behebbaren einfachen Fehler festgestellt hat, blinkt die Modulstatusanzeige rot. HINWEIS: Eine fehlerhafte Konfiguration wird z. B. als einfacher Fehler eingestuft.
	rot grün	Blinkend	Selbsttest: Während das Gerät seinen Selbsttest durchläuft, blinkt die Modul- statusanzeige grün/rot.
	-	Aus	Nicht eingeschaltet: Wenn das Gerät nicht eingeschaltet ist, leuchtet die Mo- dulstatusanzeige nicht.

LED	LED	Zustand	Bedeutung
1	grün	Ein	Verbindung zum Ethernet aufgebaut
	-	Aus	Das Gerät hat keine Verbindung zum Ethernet
2	 gelb	Blinkend	Das Gerät sendet/empfängt Ethernet- Frames

PX01PN

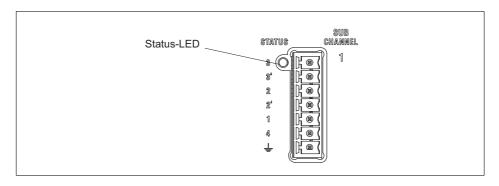

PROFINET® IO

LED	LED	Zustand	Bedeutung
SF	rot	Ein Blinkend	Systemfehler, fehlerhafte Konfiguration Blinken zur Geräteerkennung von IO-Con- troller gesteuert
BF	rot	Ein Blinkend	Keine Verbindung oder keine Konfigura- tion Busfehler, fehlerhafte Konfiguration, nicht alle IO-Geräte sind angeschlossen

LED	LED	Zustand	Bedeutung
	grün	Dauerhaft ein	Verbindung aufgebaut
1		Blinkend	Senden / Empfangen
		Aus	Keine Verbindung
2	-	-	Keine Funktion

8.2.5 Messkarten-LEDs

PX401, Kanalstatus

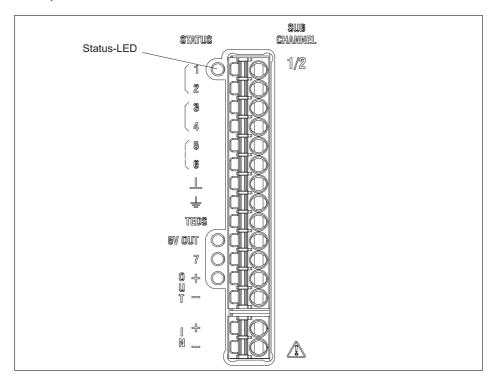

LED	Zustand	Bedeutung
grün	Ein	Keine Fehler
gelb	Blinkend	Firmwareaktualisierung
rot	Ein	Parameter nicht OK, Übersteuert

Messbereichsüberwachung

In der Voreinstellung werden alle Eingänge auf Bereichsüberschreitung geprüft (vor einem eventuell eingestellten Filter). Die zulässigen Messbereiche sind durch den angegebenen Sensortyp festgelegt. Bei einer Bereichsüberschreitung wird der Messwert ungültig.

Sensortyp	Zulässiger Messbereich
±10 V	±11,0 V
±20 mA	±21,0 mA
4 20 mA	3,9 21,0 mA

PX455, Kanalstatus

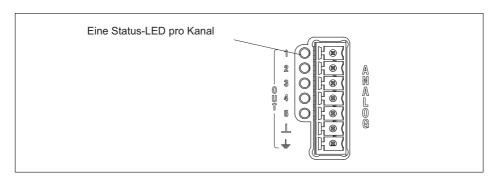

LED	Zustand	Bedeutung
grün	Ein	Keine Fehler
gelb	Ein Blinkend	Kein Aufnehmer angeschlossen oder Drahtbruch (Kalibierung läuft) Firmwareaktualisierung
rot	Ein	Parameter nicht OK, Aufnehmerfehler, Übersteuert

Messbereichsüberwachung

In der Voreinstellung werden alle Eingänge auf Bereichsüberschreitung geprüft (vor einem eventuell eingestellten Filter). Die zulässigen Messbereiche sind durch den angegebenen Sensortyp festgelegt. Bei einer Bereichsüberschreitung wird der Messwert ungültig.

Sensortyp	Zulässiger Messbereich
Vollbrücke 1000 mV/V	±1100 mV/V
Halbbrücke 1000 mV/V	±550 mV/V
Voll- und Halbbrücke 100 mV/V	±110 mV/V
Voll- und Halbbrücke 4 mV/V	±4,5 mV/V
Potenziometer	±550 mV/V
LVDT	±550 mV/V

PX460, Kanalstatus


LED	Zustand	Bedeutung
grün	Ein	Keine Fehler
gelb	Ein Blinkend	Kein Aufnehmer angeschlossen oder Drahtbruch (Kalibrierung läuft) Firmwareaktualisierung
rot	Ein	Parameter nicht OK, Aufnehmerfehler, Übersteuert

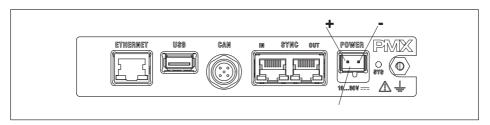
Messbereichsüberwachung

In der Voreinstellung werden alle Eingänge auf Bereichsüberschreitung geprüft (vor einem eventuell eingestellten Filter). Die zulässigen Messbereiche sind durch den angegebenen Sensortyp festgelegt. Bei einer Bereichsüberschreitung wird der Messwert ungültig.

Sensortyp	Zulässiger Messbereich
Frequenz	±2,05 MHz
Zähler	±8388607
SSI	-1073741824 +1073741823
PWM	0 100,0

PX878

LED	Zustand	Bedeutung
	Ein	Digitaler Ausgang: High
grün	Aus	Digitaler Ausgang: Low
	Ein	Digitaler Eingang: High
grün	Aus	Digitaler Eingang: Low
	Ein	Analogausgang konfiguriert
grün	Aus	Analogausgang nicht konfiguriert
	Ein	Analogausgang übersteuert,
rot	LIII	Signal ungültig

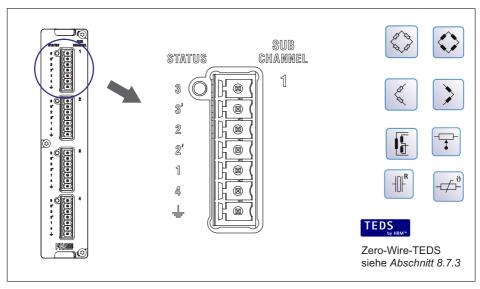

8.3 Versorgungsspannung

Hinweis

Geräteschaden durch zu hohe Spannungen.

Wenn Sie das im Zubehör aufgeführte Netzteil 1-NTX001 verwenden, beachten Sie dessen beiliegende Sicherheitshinweise.

Mit einem separaten Gleichspannungs-Netzteil (10 bis 30 V_{DC}, nom. 24 V, Leistungs-abgabe mind. 20 W) wird das PMX-Gerät über die POWER-Buchse (1) mit Spannung versorgt (siehe *Kapitel 11*, "Inbetriebnahme", Seite 137).


Messkarte	Leistungsaufnahme [W] bei 24 V Versorgungsspannung
Grundgerät	3
PX401	0,75
PX455	1,6
PX460	2
PX878	2
PX01EC (EtherCAT®)	2
PX01PN (PROFINET® IO)	2,4
PX01EP (EtherNet/IP™)	2,3

8.4 Messkarten / Aufnehmeranschluss

Siehe auch Abschnitt 8.1, Seite 47, mit Informationen zur (optionalen) Kodierung der Steckklemmen und Kapitel 6, Seite 33, zum Schirmungskonzept.

8.4.1 PX455

Vier individuell konfigurierbare DMS Voll- oder Halbbrücken (4,8 kHz TF). Induktive Voll- oder Halbbrücken, LVDT, potenziometrische Sensoren, Piezoresistive Sensoren, 4 TEDS (Zero-Wire) Sensorerkennung

Die Brückenspeisespannung beträgt 2,5 V. In der Voreinstellung werden alle Eingänge auf Bereichsüberschreitung geprüft (vor einem eventuell eingestellten Filter). Die zulässigen Messbereiche sind durch den angegebenen Sensortyp festgelegt. Bei einer Bereichsüberschreitung wird der Messwert ungültig. Schalten Sie die Bereichsüberwachung durch Anklicken des Symbols aus oder wieder ein. Bei ausgeschalteter Überwachung wird der Messwert angezeigt und bleibt gültig, ist aber durch die maximal mögliche Aussteuerung begrenzt.

Sensortyp	Zulässiger Messbereich
Vollbrücke 1000 mV/V	±1100 mV/V
Halbbrücke 1000 mV/V	±550 mV/V
Voll- und Halbbrücke 100 mV/V	±110 mV/V
Voll- und Halbbrücke 4 mV/V	±4,5 mV/V

Sensortyp	Zulässiger Messbereich
Potenziometer	±550 mV/V
LVDT	±550 mV/V

8.4.2 DMS- und induktive Vollbrücken (6-Leiter-Schaltung)

Wichtig

Bei Anschlusskabellängen >50 m müssen Sie den Anschluss der Fühlerleitungen an das PMX über je einen Widerstand vornehmen. Dieser muss den halben Wert des Brückenwiderstandes haben ($R_{\rm B}/2$) und beim Sensor montiert werden (z. B. am Ende eines fest mit dem Sensor verbundenen Kabels im Stecker).

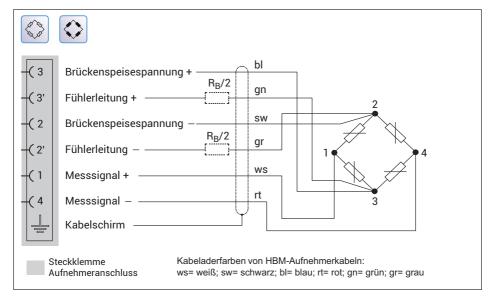


Abb. 8.3 Anschlussbelegung PX455 in 6-Leiter-Schaltung

8.4.3 DMS- und induktive Halbbrücken (6-Leiter-Schaltung)

Wichtig

Bei Anschlusskabellängen >50 m müssen Sie den Anschluss der Fühlerleitungen an das PMX über je einen Widerstand vornehmen. Dieser muss den halben Wert des Brückenwiderstandes haben ($R_{\rm B}/2$) und beim Sensor montiert werden (z. B. am Ende eines fest mit dem Sensor verbundenen Kabels im Stecker).

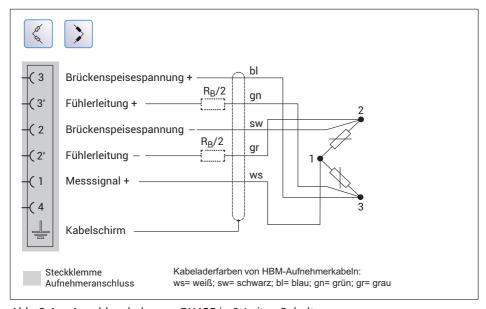


Abb. 8.4 Anschlussbelegung PX455 in 6-Leiter-Schaltung

8.4.4 DMS- und induktive Vollbrücken in 6-Leiter-Schaltung mit Zero-Wire-TEDS

Wichtig

Bei Anschlusskabellängen >50 m müssen Sie den Anschluss der Fühlerleitungen an das PMX über je einen Widerstand vornehmen. Dieser muss den halben Wert des Brückenwiderstandes minus 100 Ω haben (R_B/2 - 100). Bei Widerständen größer als 300 Ω in einer Fühlerleitung ist das TEDS-Modul nicht mehr lesbar. Der Widerstand muss in den Anschlussstecker der Verlängerung nahe dem Sensor montiert werden, nicht zwischen Sensor und TEDS und nicht an der PX455.

Siehe auch Abschnitt 8.7.2 "Inbetriebnahme des TEDS-Moduls", Seite 127.

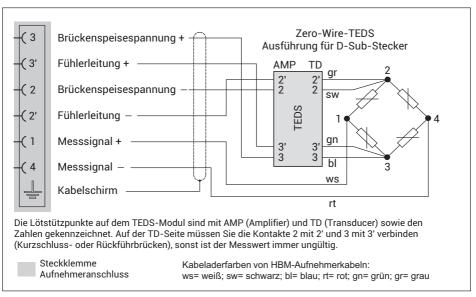


Abb. 8.5 Anschlussbelegung PX455 in 6-Leiter-Schaltung mit Zero-Wire-TEDS (D-Sub-Stecker)

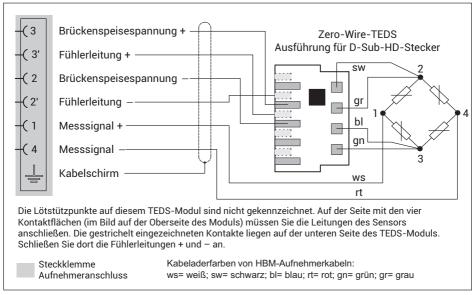


Abb. 8.6 Anschlussbelegung PX455 in 6-Leiter-Schaltung mit Zero-Wire-TEDS (D-Sub-HD-Stecker)

8.4.5 DMS- und induktive Halbbrücken in 6-Leiter-Schaltung mit Zero-Wire-TEDS

Wichtig

Bei Anschlusskabellängen >50 m müssen Sie den Anschluss der Fühlerleitungen an das PMX über je einen Widerstand vornehmen. Dieser muss den halben Wert des Brückenwiderstandes minus $100~\Omega$ haben ($R_{\rm B}/2$ - 100). Bei Widerständen größer als $300~\Omega$ in einer Fühlerleitung ist das TEDS-Modul nicht mehr lesbar. Der Widerstand muss in den Anschlussstecker der Verlängerung nahe dem Sensor montiert werden, nicht zwischen Sensor und TEDS und nicht an der PX455.

Siehe auch Abschnitt 8.7.2 "Inbetriebnahme des TEDS-Moduls", Seite 127.

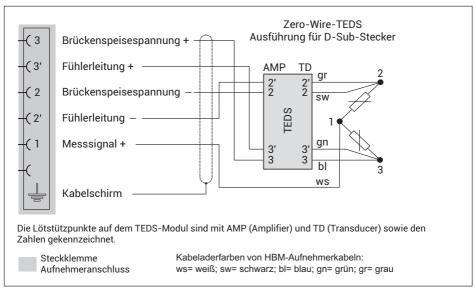


Abb. 8.7 Anschlussbelegung PX455 in 6-Leiter-Schaltung mit Zero-Wire-TEDS (D-Sub-Stecker)

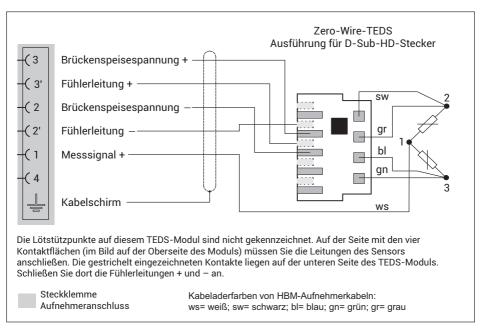


Abb. 8.8 Anschlussbelegung PX455 in 6-Leiter-Schaltung mit Zero-Wire-TEDS (D-Sub-HD-Stecker)

8.4.6 DMS- und induktive Vollbrücken (4-Leiter-Schaltung)

Wichtig

Bei Anschlusskabellängen >15 m müssen Sie anstelle der Rückführbrücken je einen Widerstand einlöten. Dieser muss den halben Wert des Brückenwiderstandes haben (R_B/2) und beim Übergang von 4-Leiter- auf 6-Leiter-Schaltung montiert werden (z. B. im Anschlussstecker des 6-Leiter-Kabels). Die Verlängerung müssen Sie in 6-Leiter-Schaltung ausführen, eine Verlängerung in 4-Leiter-Schaltung ist nicht zulässig.

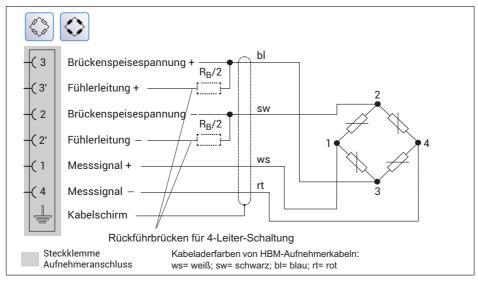


Abb. 8.9 Anschlussbelegung PX455 in 4-Leiter-Schaltung

8.4.7 DMS- und induktive Halbbrücken (4-Leiter-Schaltung)

Wichtig

Bei Anschlusskabellängen >15 m müssen Sie in die Rückführbrücken je einen Widerstand einlöten. Dieser muss den halben Wert des Brückenwiderstandes haben (R_B/2) und beim Übergang von 4-Leiter- auf 6-Leiter-Schaltung montiert werden (z. B. im Anschlussstecker des 6-Leiter-Kabels). Die Verlängerung müssen Sie in 6-Leiter-Schaltung ausführen, eine Verlängerung in 4-Leiter-Schaltung ist nicht zulässig.

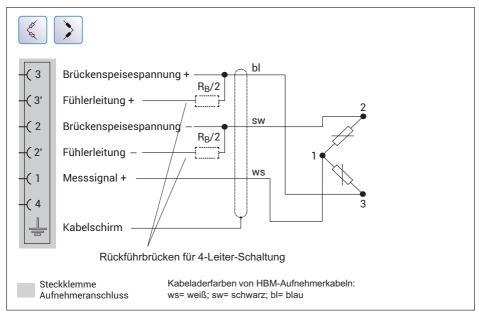


Abb. 8.10 Anschlussbelegung PX455 in 4-Leiter-Schaltung

8.4.8 DMS- und induktive Vollbrücken (4-Leiter-Schaltung) mit Zero-Wire-TEDS

Wichtig

Bei Anschlusskabellängen >15 m müssen Sie in die Fühlerleitungen am PMX je einen Widerstand einlöten. Dieser muss den halben Wert des Brückenwiderstandes minus $100~\Omega$ haben ($R_{\rm B}/2$ - 100). Bei Widerständen größer als $300~\Omega$ in einer Fühlerleitung ist das TEDS-Modul nicht mehr lesbar. Der Widerstand muss in den Anschlussstecker der Verlängerung nahe dem Sensor montiert werden, nicht zwischen Sensor und TEDS und nicht an der PX455.

Siehe auch Abschnitt 8.7.2 "Inbetriebnahme des TEDS-Moduls", Seite 127.

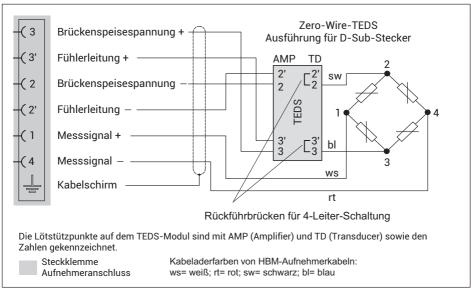


Abb. 8.11 Anschlussbelegung PX455 in 4-Leiter-Schaltung mit Zero-Wire-TEDS (D-Sub-Stecker)

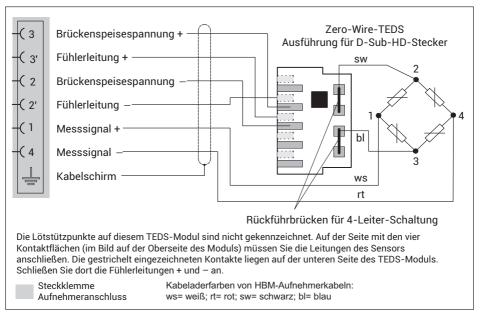


Abb. 8.12 Anschlussbelegung PX455 in 4-Leiter-Schaltung mit Zero-Wire-TEDS (D-Sub-HD-Stecker)

8.4.9 DMS- und induktive Halbbrücken (4-Leiter-Schaltung) mit Zero-Wire-TEDS

Wichtig

Bei Anschlusskabellängen >15 m müssen Sie in die Fühlerleitungen am PMX je einen Widerstand einlöten. Dieser muss den halben Wert des Brückenwiderstandes minus $100~\Omega$ haben ($R_{\rm B}/2$ - 100). Bei Widerständen größer als $300~\Omega$ in einer Fühlerleitung ist das TEDS-Modul nicht mehr lesbar. Der Widerstand muss in den Anschlussstecker der Verlängerung nahe dem Sensor montiert werden, nicht zwischen Sensor und TEDS und nicht an der PX455.

Siehe auch Abschnitt 8.7.2 "Inbetriebnahme des TEDS-Moduls", Seite 127.

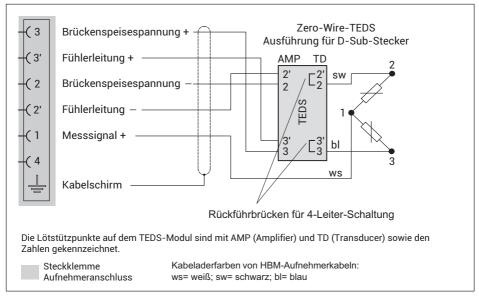


Abb. 8.13 Anschlussbelegung PX455 in 4-Leiter-Schaltung mit Zero-Wire-TEDS (D-Sub-Stecker)

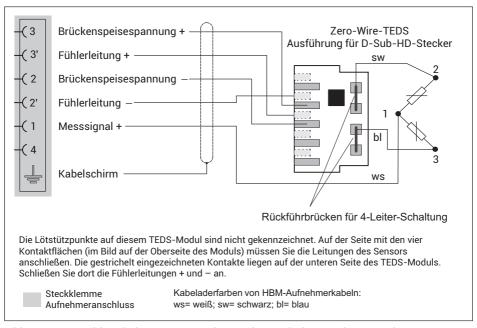


Abb. 8.14 Anschlussbelegung PX455 in 4-Leiter-Schaltung mit Zero-Wire-TEDS (D-Sub-HD-Stecker)

8.4.10 Eigensichere Messkreise – Betrieb mit Zenerbarrieren

Zum Betrieb von Aufnehmern (Wägezellen, Kraftaufnehmer etc) in expolsionsgefährdeten Bereichen müssen eigensichere Messkreise (Ex II (1) GD, [Ex ia]IIC) durch Anschluss von Sicherheitsbarrieren (Zenerbarrieren) Typ SD01A an der PX455 aufgebaut werden. Die Sicherheitsbarrieren werden wie das PMX ebenfalls auf der Hutschiene montiert. Für die verwendeten Aufnehmer muss eine ATEX-Prüfbescheinigung vorliegen. Sie können Aufnehmer mit einem Brückenwiderstand von 350 Ohm verwenden. Dabei darf nur ein Aufnehmer pro Messkanal des PX455 betrieben werden, eine Parallelschaltung ist nicht möglich. Ein TEDS-Modul kann ebenfalls nicht verwendet werden.

Verwenden Sie das Kabel KAB7.5/00-2/2/2 von HBM, LF-ZYAECVY 3x2x0,14 mm², Bestell-Nr. 1-CABE2/20 oder 1-CABE2/100, oder Kabel der Lappgroup (http://www.lappgroup.com): Li2YCYPMF 3x2x0,5 mm².

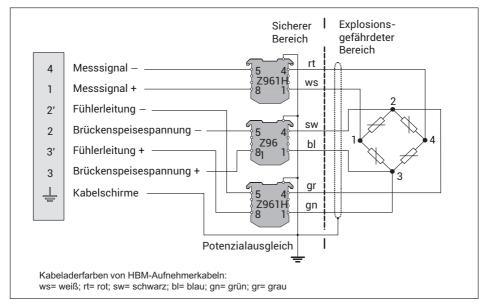


Abb. 8.15 Anschlussbelegung PMX455 mit Sicherheitsbarrieren SD01A

Der PX455 bietet 4 Messkanäle mit 4,8 kHz Trägerfrequenz. Verwenden Sie die internen Berechnungskanäle des PMX, um z. B. Messsignale zu addieren, zu subtrahieren oder den Mittelwert zu bilden.

Wichtig

Neben der SD01A ist auch die negative Betriebsspannung des PMX zu erden! Es sind max. Kabellängen bis 100 Meter zulässig. Ein TEDS-Modul kann nicht verwendet werden.

Die Genauigkeitsklasse der PX455 bei Betrieb mit SD01A liegt bei 0,5 %.

8.4.11 LVDT-Aufnehmer

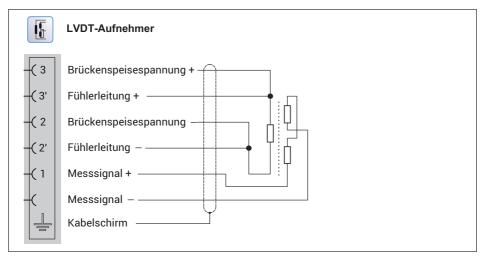


Abb. 8.16 Anschlussbelegung PX455 LVDT-Aufnehmer

8.4.12 LVDT-Aufnehmer mit Zero-Wire-TEDS

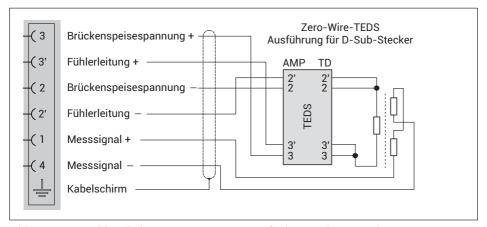


Abb. 8.17 Anschlussbelegung PX455 LVDT-Aufnehmer mit Zero-Wire-TEDS (D-Sub-Stecker)

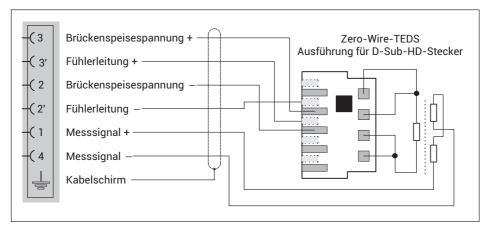


Abb. 8.18 Anschlussbelegung PX455 LVDT-Aufnehmer mit Zero-Wire-TEDS (D-Sub-HD-Stecker)

8.4.13 Potenziometrische Aufnehmer

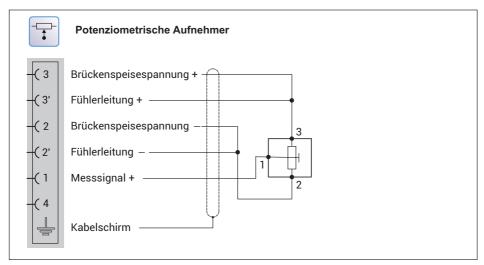


Abb. 8.19 Anschlussbelegung PX455 für potenziometrische Aufnehmer

Wichtig

Aufnehmeranschluss in 4/3-Leiter-Schaltung:

Bei Anschluss eines Aufnehmers in 4/3-Leiter-Schaltung müssen Sie die Fühlerleitungen mit den entsprechenden Brückenspeiseleitungen (PIN 2' mit Pin 2 sowie Pin 3' mit Pin 3) durch Drahtbrücken verbinden, da sonst ein Sensorfehler gemeldet wird. Bei Anschluss in 4-Leiter-Schaltung steht die TEDS-Funktionalität nicht zur Verfügung.

8.4.14 Potenziometrische Aufnehmer mit Zero-Wire-TEDS

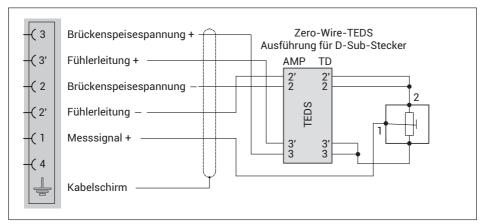


Abb. 8.20 Anschlussbelegung PX455 für potenziometrische Aufnehmer mit Zero-Wire-TEDS (D-Sub-Stecker)

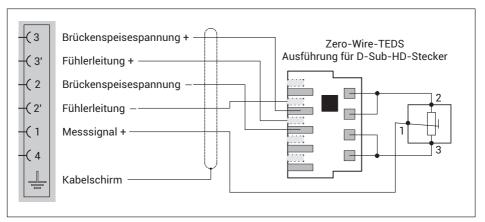


Abb. 8.21 Anschlussbelegung PX455 für potenziometrische Aufnehmer mit Zero-Wire-TEDS (D-Sub-HD-Stecker)

8.4.15 PX455 mit Pt100-Temperaturmessung

Mit der Messkarte PX455 lassen sich Temperaturen ohne externen Vorverstärker mit einer Messunsicherheit von +/-1°C messen. Dazu müssen Sie den Pt100-Widerstand mit einem Präzisions-Widerstand (R_compl) von 100 Ohm mit höchstens 0,1% Toleranz zu einer Halbbrücke ergänzen und direkt an den Klemmen des PX455 anschließen. Der PMX-Berechnungskanal "Pt100 an PX455" wandelt die gemessene Brückenverstimmung dann in Grad Celsius um und führt eine Korrekturrechnung gemäß dem verwendeten Sensorkabel (R_wire) durch.

Wichtig

Damit der Messfehler durch Eigenerwärmung des Pt100 möglichst klein bleibt, achten Sie unbedingt auf eine gute Wärmeableitung! Das kann z. B. durch eine Montage auf einen metallischen Körper erfolgen.

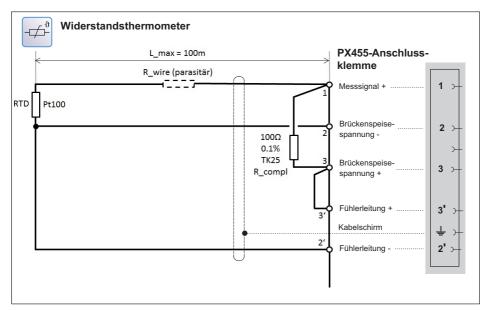
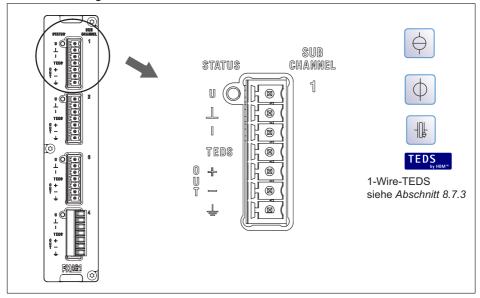



Abb. 8.22 PX455 mit Pt100-Element zur Temperaturmessung

8.4.16 PX401

Vier individuell konfigurierbare Strom- oder Spannungseingänge mit 4 TEDS (1-Wire) Sensorerkennung.

In Verbindung mit dem Smart-Modul 1-EICP-B-2 können Sie auch IEPE-Sensoren verwenden.

In der Voreinstellung werden alle Eingänge auf Bereichsüberschreitung geprüft (vor einem eventuell eingestellten Filter). Die zulässigen Messbereiche sind durch den angegebenen Sensortyp festgelegt. Bei einer Bereichsüberschreitung wird der Messwert ungültig. Schalten Sie die Bereichsüberwachung durch Anklicken des Symbols aus oder wieder ein. Bei ausgeschalteter Überwachung wird der Messwert angezeigt und bleibt gültig, ist aber durch die maximal mögliche Aussteuerung begrenzt.

Sensortyp	Zulässiger Messbereich
±10 V	±11,0 V
±20 mA	±21,0 mA
4 20 mA	3,9 21,0 mA

8.4.17 Spannungsquelle ± 10 V

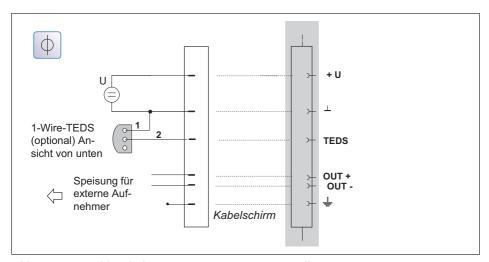


Abb. 8.23 Anschlussbelegung PX401: Spannungsquelle ±10 V

8.4.18 Stromquelle ± 20 mA

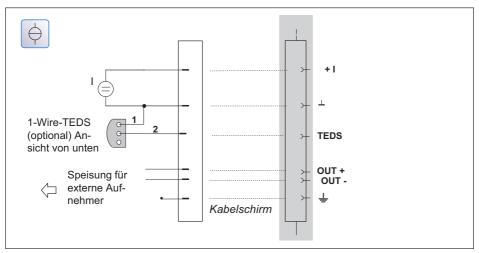


Abb. 8.24 Anschlussbelegung PX401: Stromquelle ±20 mA (4-Leiter-Schaltung)

8.4.19 Stromsenke ± 20 mA

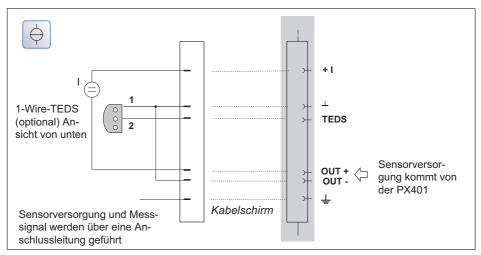


Abb. 8.25 Anschlussbelegung PX401: Stromsenke ±20 mA (2-Leiter-Schaltung)

Stromgespeiste piezoelektrische Aufnehmer IEPE- oder IPC-Aufnehmer werden mit Konstantstrom gespeist, z. B. 4 mA, und liefern ein Spannungssignal, das Sie über ein externes Modul mit der PX401 betreiben können.

8.4.20 IEPE-Aufnehmer mit externem Verstärker

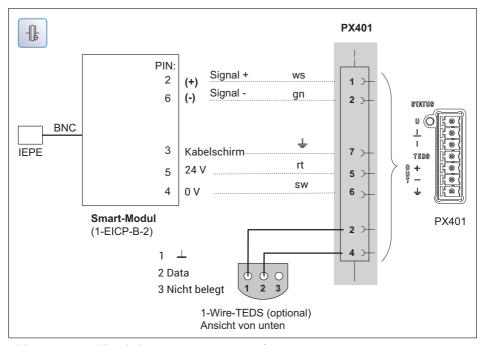


Abb. 8.26 Anschlussbelegung PX401 IEPE-Aufnehmer

8.4.21 PX401 mit Ladungsverstärker

Piezoelektrische Sensoren können über die externen Ladungsverstärker CMA oder CMD mit der PX401 betrieben werden. Die Ladungsverstärker wandeln dabei das Sensorsignal in ein ±10 V-Spannungssignal um. Das Reset/Operate-Signal des Ladungsverstärkers kann von einer externen Steuerung oder über einen Digitalausgang einer PX878 im PMX erfolgen.

Wichtig

Bedingt durch den Einschaltstrom des **CMD**-Ladungsverstärkers muss die Speisung des CMD separat und nicht über die Messkarte PX401 erfolgen.

Piezosensor mit externem Ladungsverstärker

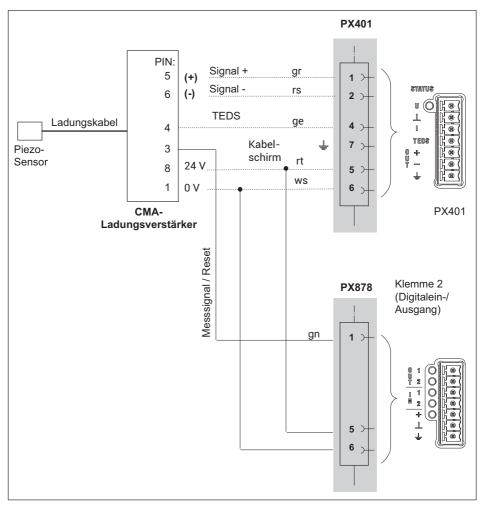


Abb. 8.27 Anschlussbelegung PX401 mit externem Ladungsverstärker

Externe Aufnehmer werden über die Messkarte PX401 (OUT + und OUT -) versorgt. Die Versorgungsspannung entspricht der Geräteversorgungsspannung.

Der maximale Strom beträgt 400 mA pro Messkarte und wird auf die benutzten Aufnehmer aufgeteilt.

8.4.22 Potenzialtrennung bei PX401

Wichtig

Die einzelnen Messkanäle auf der Messkarte PX401 sind nicht untereinander galvanisch getrennt. Die Messkarte PX401 verfügt über eine gemeinsame Potenzialtrennung zum Grundgerät.

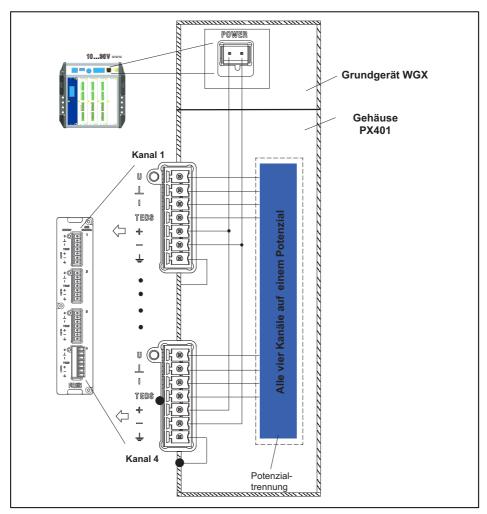
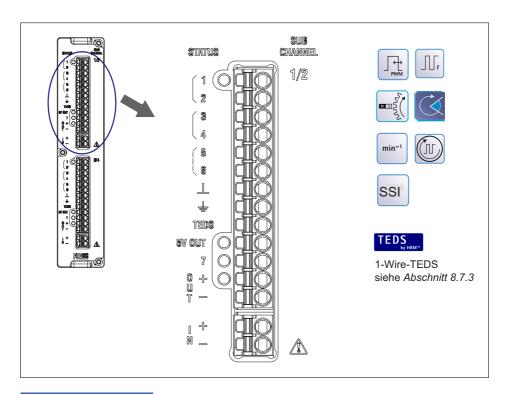


Abb. 8.28 Potenzialtrennung PX401

8.4.23 PX460

Drehmomentmesswellen (Drehmoment, Drehzahl, Drehwinkel), Winkel-/Inkrementalencoder, SSI-, PWM-Sensoren, Frequenzmessung bis 2 MHz

Kanal 1 und 3: Frequenzmessung (fest)


Kanal 2 und 4: Frequenz (digital/induktiv), Zähler, Encoder, SSI, PWM (einstellbar)

Folgende Messmodi stehen zur Verfügung:

- Bis zu vier Drehmomentmesswellen (T10, T12, T40) zur Drehmoment- oder Drehzahlmessung (ohne Drehrichtungserkennung)
- oder zwei Drehmomentmesswellen zur gleichzeitigen Messung von Drehmoment und Drehzahl (ohne Drehwinkel / Drehrichtungserkennung)
- oder eine Drehmomentmesswelle zur gleichzeitigen Messung von Drehmoment, Drehzahl und Drehwinkel und Drehrichtung bzw. Referenzimpulserkennung
- oder jeweils zwei Winkel-/Inkrementalencoder, SSI-, PWM-Sensoren, magnetischen Aufnehmer oder Impulszähler
- oder vier Drehmomentmesswellen zur Frequenzmessung bis 2 MHz inklusive zweimal Shuntkalibrierung und zweimal 1-Wire-TEDS (Sensorerkennung).

In der Voreinstellung werden alle Eingänge auf Bereichsüberschreitung geprüft (vor einem eventuell eingestellten Filter). Die zulässigen Messbereiche sind durch den angegebenen Sensortyp festgelegt. Bei einer Bereichsüberschreitung wird der Messwert ungültig. Schalten Sie die Bereichsüberwachung durch Anklicken des Symbols aus oder wieder ein. Bei ausgeschalteter Überwachung wird der Messwert angezeigt und bleibt gültig, ist aber durch die maximal mögliche Aussteuerung begrenzt. Ausnahme: bei einem Zahlenüberlauf (Zähler, SSI) wird NaN (not a number) angezeigt und $\pm 3.4*10^{38}$ (ungültig) ausgegeben.

Sensortyp	Zulässiger Messbereich
Frequenz	±2,05 MHz
Zähler	±8,388607
SSI	-1.073.741.824 +1.073.741.823
PWM	0 100,0

Hinweis

Die Sensoren für den PX460 werden extern über die Kontakte (IN + -) mit Spannung versorgt. Die PX460-Karte stellt dann die Versorgung für 24 V (OUT + -) und 5 V (5 V OUT) zur Verfügung.

Die vom Sensor in den PX460 eingespeisten Eingangssignale dürfen \max . ± 15 V betragen, sonst können die Messeingänge des PX460 zerstört werden.

Ein Shunt lässt sich über Pin7 anschließen. Er kann über den PMX-Webbrowser, einen PMX-Befehl, das .NET-API oder catman® aktiviert werden.

8.4.24 Spannungsversorgung für Signalgeber und Aufnehmer bis 24 V_{DC} Nennspannung

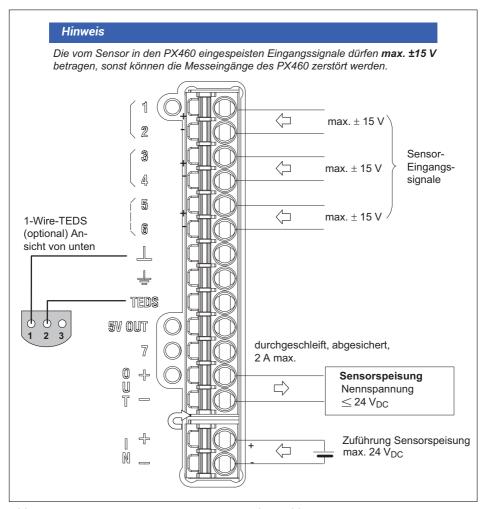


Abb. 8.29 Spannungsversorgung, PX460-Optionen bis 24 V_{DC} Nennspannung

8.4.25 Spannungsversorgung für Signalgeber und Aufnehmer bis 5 V_{DC} Nennspannung

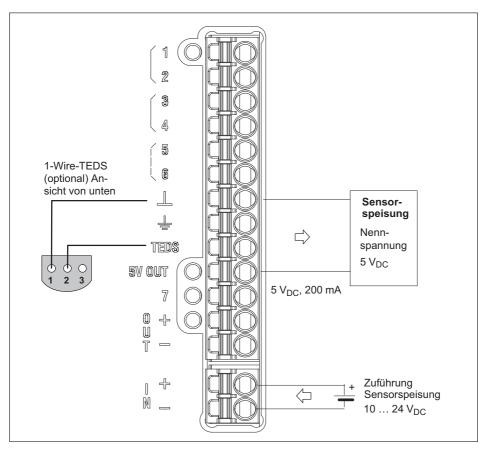


Abb. 8.30 Spannungsversorgung, PX460-Optionen bis 5 V_{DC} Nennspannung

8.4.26 Frequenzmessung symmetrisch (differentiell)

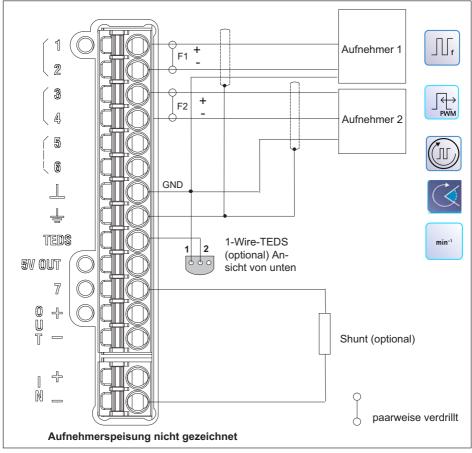


Abb. 8.31 Anschlussbelegung PX460 für zwei Frequenzen, differentiell

Mögliche Kanaleinstellung über Webserver:

Aufnehmer 1: Frequenz (digital), fest

Aufnehmer 2: Frequenz (digital), Zähler, PWM

8.4.27 Frequenzmessung asymmetrisch (einpolig)

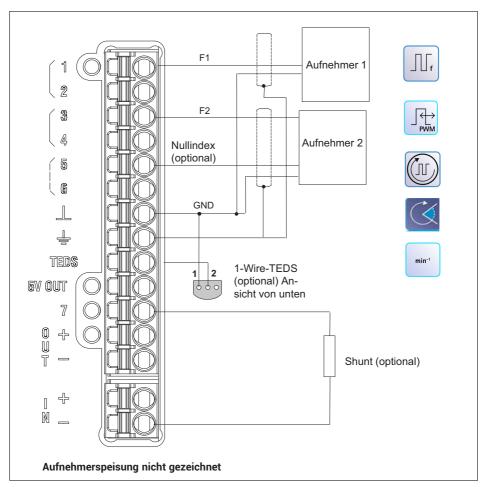


Abb. 8.32 Anschlussbelegung PX460 für zwei Frequenzen asymmetrisch

Mögliche Kanaleinstellung über Webserver:

Aufnehmer 1: Frequenz (digital), fest

Aufnehmer 2: Frequenz (digital), fest, Zähler, PWM

8.4.28 Drehgeber und Inkrementalencoder, symmetrisch (differentiell)

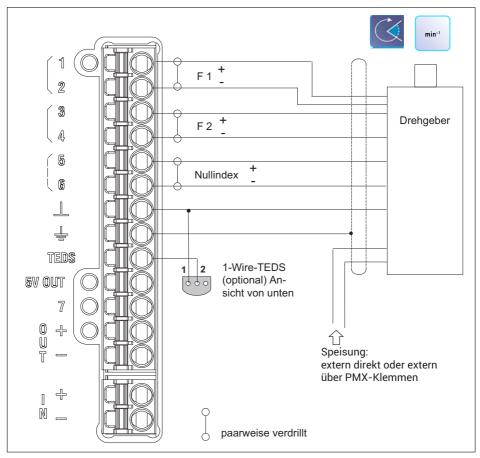


Abb. 8.33 Anschlussbelegung PX460 für Drehgeber symmetrisch

Mögliche Kanaleinstellung über Webserver:

Aufnehmer 1: Frequenz (digital), fest

Aufnehmer 2: Frequenz (digital), Zähler, PWM

8.4.29 Drehgeber und Inkrementalencoder mit Richtungssignal, symmetrisch (differentiell)

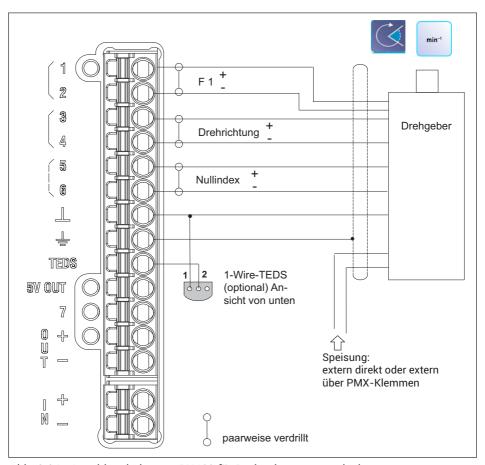


Abb. 8.34 Anschlussbelegung PX460 für Drehgeber symmetrisch

Mögliche Kanaleinstellung über Webserver:

Aufnehmer 1: Frequenz (digital), fest
Aufnehmer 2: Typ: "Richtungs-Bit", Zähler

8.4.30 Drehgeber und Inkremantalencoder, asymmetrisch (einpolig)

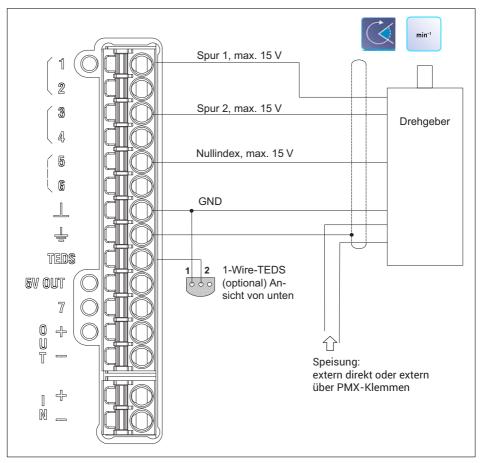


Abb. 8.35 Anschlussbelegung PX460 für Drehgeber asymmetrisch

Mögliche Kanaleinstellung über Webserver:

Aufnehmer 1: Frequenz (digital), fest

Aufnehmer 2: Frequenz (digital), Zähler, PWM

8.4.31 Drehgeber und Inkrementalencoder mit Richtungssignal, asymmetrisch (einpolig)

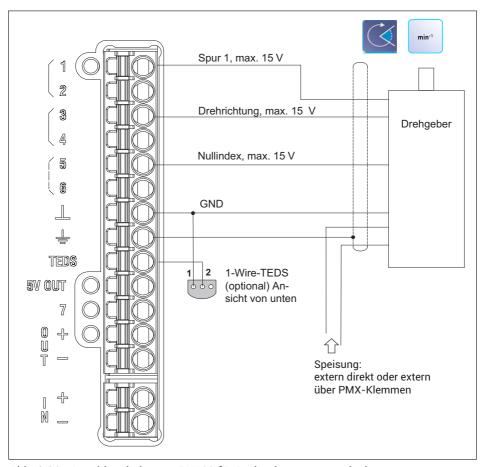


Abb. 8.36 Anschlussbelegung PX460 für Drehgeber asymmetrisch

Mögliche Kanaleinstellung über Webserver:

Aufnehmer 1: Frequenz (digital), fest
Aufnehmer 2: Typ: "Richtungs-Bit", Zähler

8.4.32 SSI-Encoder (nur aktiv)

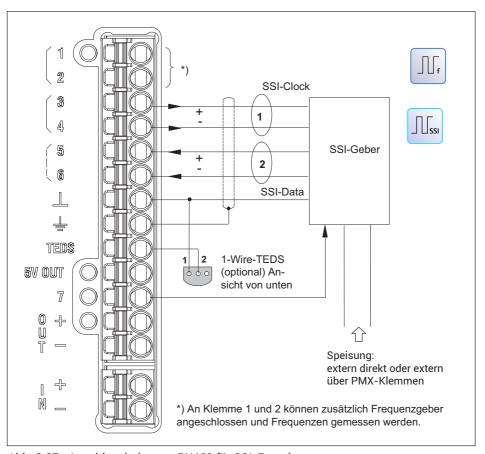


Abb. 8.37 Anschlussbelegung PX460 für SSI-Encoder

Mögliche Kanaleinstellung über Webserver:

Aufnehmer: SSI

8.4.33 Induktive Dreh-oder Impulsgeber (nur passiv)

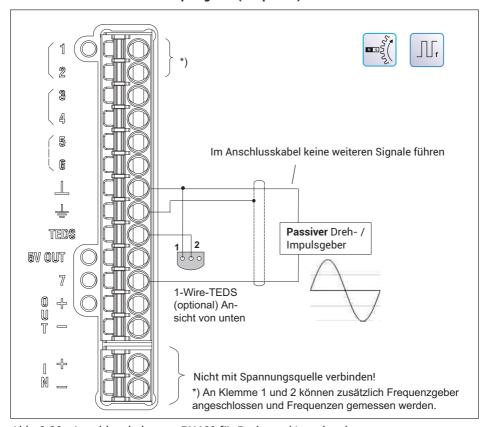


Abb. 8.38 Anschlussbelegung PX460 für Dreh- und Impulsgeber

Mögliche Kanaleinstellung über Webserver:

Aufnehmer: Frequenz (induktiv)

Wichtig

Dieser Signaleingang ist nur für passive Impulsgeber ausgelegt.

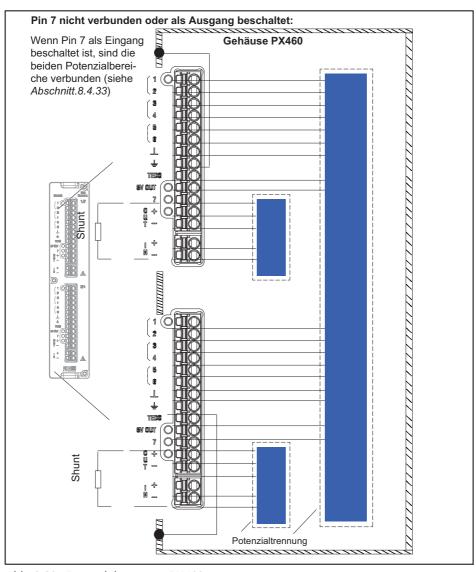


Abb. 8.39 Potenzialtrennung PX460

8.4.34 Anschluss und Konfiguration der HBM-Drehmomentmesswellen (T10, T12, T40)

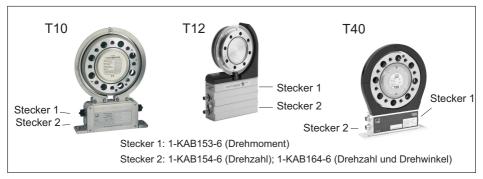


Abb. 8.40 Steckerpositionen T10, T12, T40

Belegung Stecker 1: T10, T12, T40

Versorgungsspannung und Frequenz-Ausgangssignal

Gerätestecker	Stecker Pin	Belegung	Aderfarbe
Draufsicht	1	Messsignal Drehmoment (Frequenzausgang; 5 V ^{1),2)})	ws
	2	Versorgungsspannung 0 V;	sw
	3	Versorgungsspannung 18 V 30 V	bl
	4	Messsignal Drehmoment (Frequenzausgang; 5 V ^{1),2)})	rt
	5	Messsignal 0V, symmetrisch	gr
	6	Shuntsignal-Auslösung 5 V 30 V	gn
	7	Shuntsignal 0 V	gr
		Schirm an Gehäusemasse	

¹⁾ Komplementäre Signale RS-422; ab 10 m Kabellänge empfehlen wir einen Abschlusswiderstand mit R = 120 Ohm zwischen den Adern (ws) und (rt).

²⁾ RS-422: Pin 1 entspricht A, Pin 4 entspricht B.

Belegung Stecker 2: T10, T12, T40

Drehzahl-Ausgangssignal, Referenzimpuls (optional)

Gerätestecker	Stecker Pin	Belegung	Ader- farbe
5 • 4 3 • 8 • 1	1	Messsignal Drehzahl ¹⁾ (Impulsfolge, 5 V; 0°)	rt
	2	Referenzsignal (1 Impuls/Umdrehung, 5 $V^{(1)}$)	bl
	3	Messsignal Drehzahl (Impulsfolge, 5 V; um 90° phasenverschoben)	gr
	4	Referenzsignal (1 Impuls/Umdrehung, 5 V) ¹⁾⁾	sw
7 6	5	Nicht belegt	vi
Draufsicht	6	Messignal Drehzahl ¹⁾⁾ (Impulsfolge, 5 V; 0°)	ws
	7	Messignal Drehzahl (Impulsfolge, 5 V; um 90° phasenverschoben)	gn
	8	Betriebsspannungsnull	bn
		Schirm an Gehäusemasse	

¹⁾ Komplementäre Signale RS-422; ab 10 m Kabellänge empfehlen wir einen Abschlusswiderstand mit R = 120 Ohm.

Anschlussbeispiele (Drehmomentmesswellen):

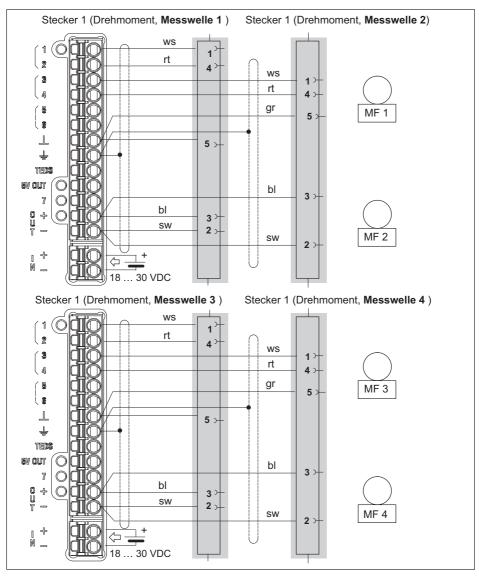


Abb. 8.41 PX460: Vier Drehmomentmesswellen, nur Drehmoment

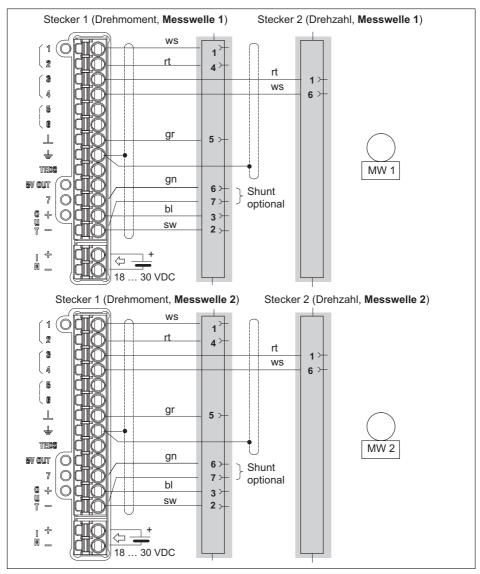


Abb. 8.42 PX460: Zwei Drehmomentmesswellen, Drehmoment und Drehzahl ohne Drehwinkel/Drehrichtung

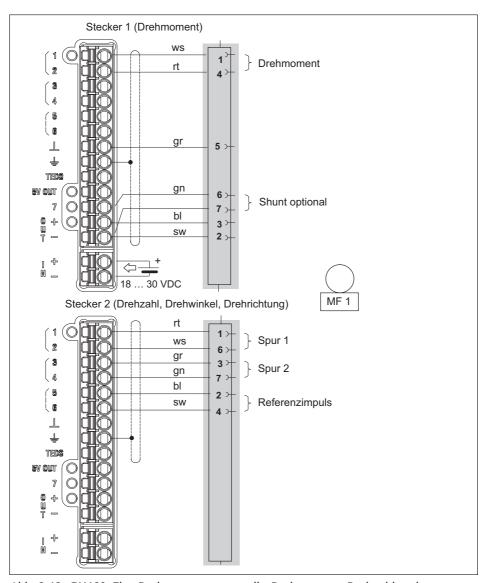


Abb. 8.43 PX460: Eine Drehmomentmesswelle, Drehmoment, Drehzahl und Drehwinkel/Drehrichtung

Einstellbeispiel (Webbrowser): T40B an PMX

Kanal 1 (PX460 oberer Stecker): Drehmoment, Mittenfrequenz 10 kHz, Nennmoment 1 kNm

Kanal 2 (PX460 oberer Stecker): nicht benutzt

Kanal 3 (PX460 unterer Stecker): Drehzahl in 1/min, 1024 Impulse

Kanal 4 (PX460 unterer Stecker): Drehwinkel in Grad; 4-fache Auflösung, deshalb 4096 Pulse = 360°

Bedingt durch das Messprinzip (Pulszählung) schwanken die Messwerte um den wahren Wert. Testen Sie deshalb, ob Sie ein Filter benötigen, z. B. mit 500 Hz. Die Einstellungen im Webbrowser zeigen die folgenden Bilder.

8.4.35 Anschluss und Konfiguration der HBM-Drehmomentmesswelle T210

Abb. 8.44 T210

Belegung Stecker T210

Verschaltung der Versorgungsspannung und der Ausgangssignale am Stecker siehe die folgende Tabelle. Die Aderfarben entsprechen dem Aufnehmer-Anschlusskabel, z. B. in der Version 5 m lang, Bestell-Nr. 3-3301.0158.

	Pin	Belegung	Ader- farbe	Kontroll- signal aus- lösen
	A	Messsignal Drehmoment (Frequenz- ausgang; 5 V) ^{1) 2)}	sw	(ohne VK20A)
B A K	В	Messsignal Drehzahl/Drehwinkel A; 5 V	rt	
	С	Messsignal Drehmoment ±10 V	br	
	D	Messsignal Drehmoment 0 V	ws	
	E	Masse (Versorgung + Drehzahl/Drehwinkel)	ge	
	F	Versorgungsspannung 10 V 30 V	vi	
	G	Messsignal Drehzahl/Drehwinkel B; 5 V; um 90° nacheilend	gn	
	Н	Referenzsignal Drehzahl Z; 5 V	rs	
	J	Messsignal - Messbereit	gr	Schalter
	К	Kontrollsignalauslösung (Shunt), 50%-Signal	gr/rs	」(NO)
	L	Messsignal Drehmoment (Frequenz- ausgang; 5V) ^{1), 2)}	bl/rt	
	М	Nicht belegt	bl	

¹⁾ Komplementäre Signale RS-422. Bei Problemen mit der Signalqualität kann ein Abschlusswiderstand R=120 Ohm zwischen den Adern (sw) und (bl/rt) eine Verbesserung erzielen.

Sie können mit einer Messkarte PX460 das Drehmoment und sowohl Drehzahl als auch Drehwinkel messen. Damit werden 3 der 4 Eingänge belegt. Den Anschluss an einen PX460 zeigt *Abb. 8.45*.

²⁾ RS-422: Pin A entspricht A, Pin L entspricht B

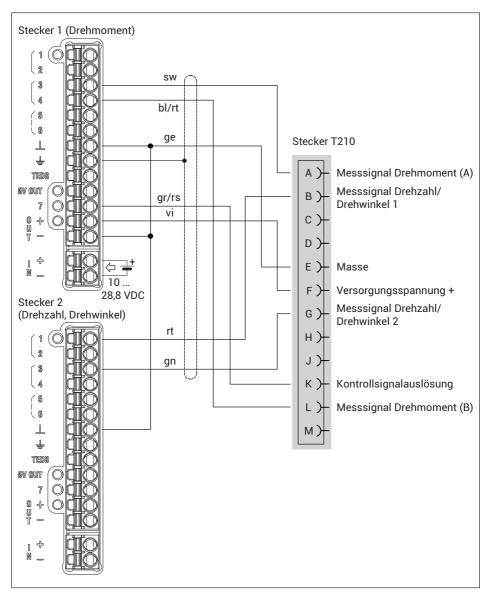


Abb. 8.45 PX460: T210 mit Drehmoment, Drehzahl und Drehwinkelmessung

Einstellbeispiel (Webbrowser): T210 mit 20 Nm an PMX

Kanal 1:

nicht benutzt

Kanal 2 (PX460 oberer Stecker), Drehmoment:

Sensortyp: Frequenz (digital)

Einheit: Nm

1. Punkt elektrisch: 10 kHz 1. Punkt physikalisch: 0 Nm 2. Punkt elektrisch: 15 kHz 2. Punkt physikalisch: 20 Nm Eingangstyp: Differenziell

Kanal 3 (PX460 unterer Stecker), Drehzahl:

Sensortyp: Frequenz (digital)

Einheit: U/min

1. Punkt elektrisch: 0 Hz

1. Punkt physikalisch: 0 U/min 2. Punkt elektrisch: 170,6667 kHz

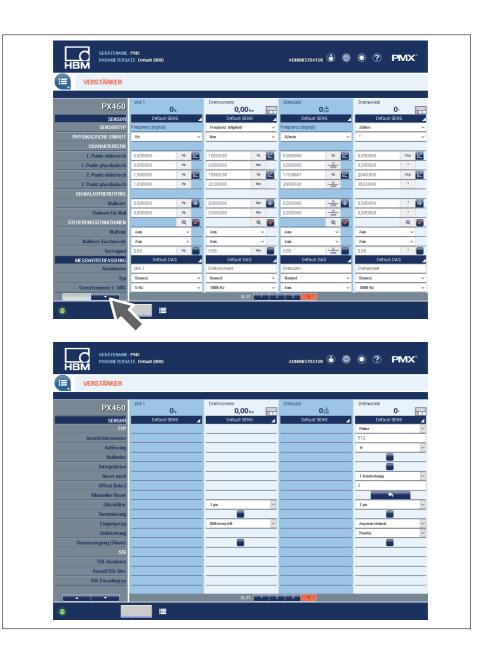
2. Punkt physikalisch: 20000 U/min

Kanal 4 (PX460 unterer Stecker), Drehwinkel:

Sensortyp: Zähler

Einheit: °

1. Punkt elektrisch: 0 Imp 1. Punkt physikalisch: 0° 2. Punkt elektrisch: 2048 Imp 2. Punkt physikalisch: 360°


Typ: Pulse

Anzahl Inkremente: 512

Auflösung: 4*

Reset nach: 1 Umdrehung Eingangstyp: Asymmetrisch Zählrichtung: Positiv

Bedingt durch das Messprinzip (Pulszählung) schwanken die Messwerte um den wahren Wert. Testen Sie deshalb, ob Sie ein Filter benötigen, z. B. mit 1000 Hz. Die Einstellungen im Webbrowser zeigen die folgenden Bilder.

8.4.36 Anschluss und Konfiguration der HBM-Drehmomentmesswelle T21WN

Abb. 8.46 T21WN

Belegung Stecker T21WN

Verschaltung der Versorgungsspannung und der Ausgangssignale am Stecker siehe die folgende Tabelle. Die Aderfarben entsprechen dem Aufnehmer-Anschlusskabel, z. B. in der Version 5 m lang, Bestell-Nr. 3-3301.0158.

Sie können mit einer Messkarte PX460 das Drehmoment und sowohl Drehzahl als auch Drehwinkel messen. Damit werden 3 der 4 Eingänge belegt. Den Anschluss an einen PX460 zeigt *Abb. 8.47*.

	Pin	Belegung	Ader- farbe	
	Α	Messsignal Drehmoment (Frequenzausgang; 5 V) ¹⁾⁾²⁾⁾	sw	
	В	Messsignal Drehzahl/Drehwin- kel 5 V	rt	
	С	Messsignal Drehmoment ± 10 V	br	
	D	Messsignal Drehmoment 0 V	ws	
	E	Masse (Versorgung+Drehzahl/ Drehwinkel)	ge	Kontroll-
	F	Versorgungsspannung +10 V 28,8 V	vi	
	G	Messsignal Drehzahl/Drehwin- kel 5 V, um 90° nacheilend	gn	auslösen Schal-
	Н	Nicht belegt	rs	ter
	J	Messsignal - Messbereit	gr	(NO)
	К	Kontrollsignalauslösung	gr/rs]
	L	Messsignal Drehmoment (Frequenzausgang; 5V) ¹⁾⁾²⁾⁾	bl/rt	
	М	Spannungsreferenz Drehzahl/ Winkel ³⁾⁾	bl	

¹⁾ Komplementäre Signale RS-422, ab 10 m Kabellänge empfehlen wir einen Abschlusswiderstand mit R = 120 Ohm zwischen den Adern (sw) und (bl/rt) bzw. Pin A und L.

²⁾ RS-422: Pin A entspricht A, Pin L entspricht B.

³⁾ Ohne externe Spannungsreferenz liefert der Drehzahl-, Winkel- und Messbereit-Ausgang einen TTL Pegel. Falls Sie höhere Pegel benötigen (z. B. für SPS-Eingänge) geben Sie über Pin M eine Spannungsreferenz 5 V < U < 24 V vor.</p>

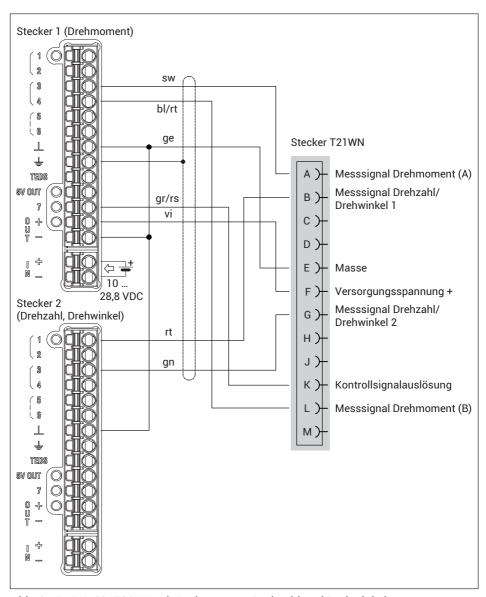


Abb. 8.47 PX460: T21WN mit Drehmoment, Drehzahl und Drehwinkelmessung

Einstellbeispiel (Webbrowser): T21WN mit 20 Nm an PMX

Kanal 1:

nicht benutzt

Kanal 2 (PX460 oberer Stecker), Drehmoment:

Sensortyp: Frequenz (digital)

Einheit: Nm

1. Punkt elektrisch: 10 kHz 1. Punkt physikalisch: 0 Nm 2. Punkt elektrisch: 15 kHz 2. Punkt physikalisch: 20 Nm Eingangstyp: Differenziell

Kanal 3 (PX460 unterer Stecker), Drehzahl:

Sensortyp: Frequenz (digital)

Einheit: U/min

Punkt elektrisch: 0 Hz
 Punkt physikalisch: 0 U/min
 Punkt elektrisch: 360 Hz
 Punkt physikalisch: 60 U/min

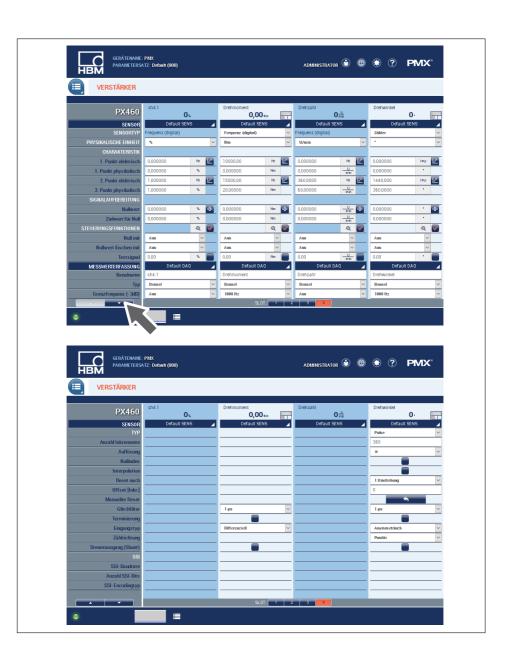
Kanal 4 (PX460 unterer Stecker), Drehwinkel:

Sensortyp: Zähler

Einheit: °

1. Punkt elektrisch: 0 Imp 1. Punkt physikalisch: 0° 2. Punkt elektrisch: 1440 Imp 2. Punkt physikalisch: 360°

Typ: Pulse


Anzahl Inkremente: 360

Auflösung: 4*

Reset nach: 1 Umdrehung Eingangstyp: Asymmetrisch

Zählrichtung: Positiv

Bedingt durch das Messprinzip (Pulszählung) schwanken die Messwerte um den wahren Wert. Testen Sie deshalb, ob Sie ein Filter benötigen, z. B. mit 1000 Hz. Die Einstellungen im Webbrowser zeigen die folgenden Bilder.

8.4.37 Anschluss und Konfiguration der HBM-Drehmomentmesswelle T20WN (ohne VK20A)

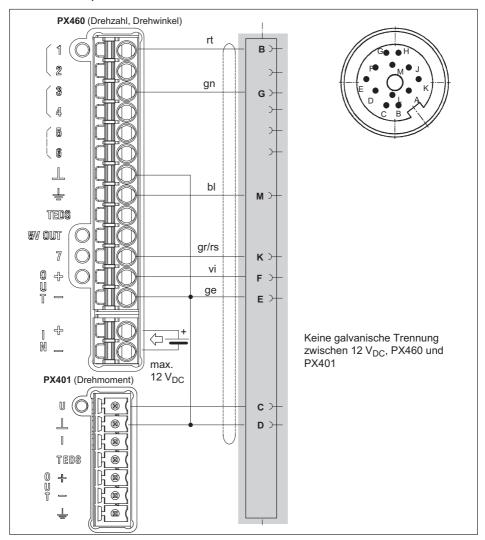


Abb. 8.48 Anschlussbelegung T20WN ohne VK20A

Hinweis

Die Spannungsversorgung der Drehmomentmesswelle T20WN darf 12 V nicht überschreiten. Die Versorgung kann über ein externes Netzteil (max. 12 V) oder über das PMX-Gerät erfolgen (bei max. 12 V PMX-Geräteversorgung). Alternativ können Sie die Messwelle auch über den Klemmenkasten VK20A an das PMX-Gerät anschließen. Dieser kann (auch über das PMX) mit max. 30 V versorgt werden.

Belegung Stecker T20WN

	Pin	Belegung	Ader- farbe	
	Α	Nicht belegt	sw	
	В	Messsignal Drehzahl/Drehwinkel 5 V	rt	Brücke
	С	Messsignal Drehmoment ±10 V	br	Didoke
GaaH	D	Messsignal Drehmoment 0 V	ws	
FO M J K D A A A A A A A A A A A A A A A A A A	Е	Masse (Versorgung+Drehzahl/Drehwinkel)	ge	
	F	Versorgungsspannung +12 V	vi	
	G	Messsignal Drehzahl/Drehwinkel 5 V, um 90° nacheilend	gn	/
	Н	Nicht belegt	rs	
	J	Nicht belegt	gr	
	K	Kontrollsignalauslösung	gr/rs	Schalter (NO)
	L	Nicht belegt	bl/rt	(.10)
	М	Kabelschirm	bl	

Aufnehmer-Anschlusskabel:

3-3301.0158, 5 m

3-3301.0159, 10 m

8.4.38 Anschluss und Konfiguration der HBM-Drehmomentmesswelle T20WN (mit VK20A)

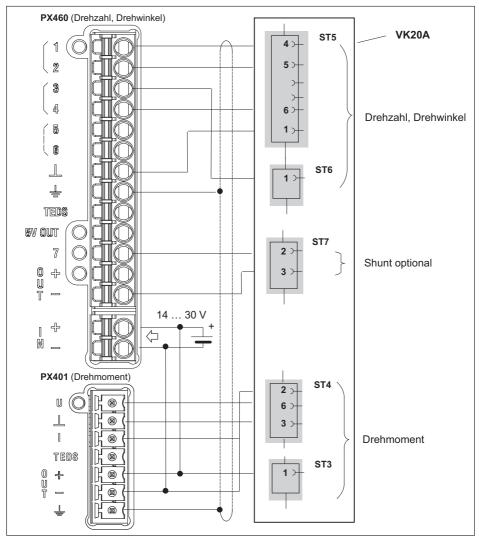
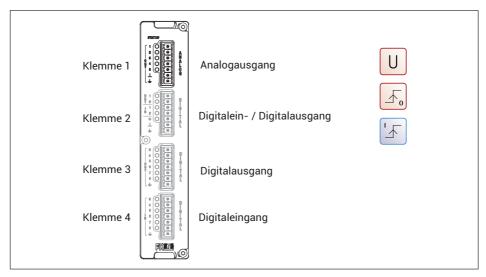



Abb. 8.49 Anschlussbelegung T20WN mit VK20A

8.5 Ein-/Ausgabekarten

8.5.1 PX878

Acht digitale Eingänge, acht digitale Ausgänge und fünf analoge Spannungsausgänge

8.5.2 Analogausgang ± 10 V

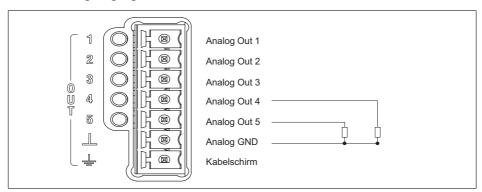


Abb. 8.50 Anschlussbelegung Analogausgang (Klemme 1)

8.5.3 Digitalein- und Digitalausgänge

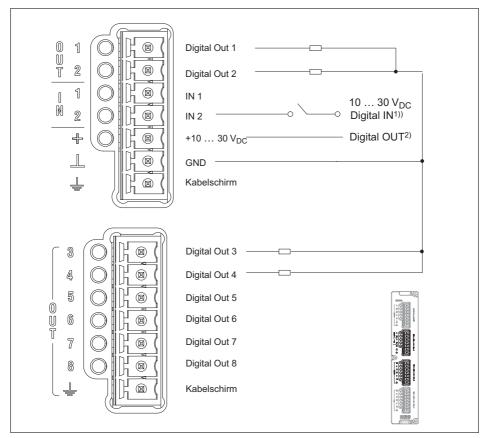


Abb. 8.51 PX878: Anschlussbelegung Digitalein-/Digitalausgang (Klemmen 2 und 3)

¹⁾ Externe Spannung oder Signal von externer Quelle.

²⁾ Externe Spannungsversorgung für Digital OUT, z. B. für die Spannungsversorgung des PMX (POWER).

Abb. 8.52 PX878: Anschlussbelegung Digitaleingang (Klemme 4)

Wichtig

Definieren Sie die Funktionen der Steuerein- und Ausgänge sowie der Analogausgänge über den PMX-Webserver. Der Digitaleingang muss gegen Plus schalten. Ein offener Eingang wird als "low" erkannt.

8.5.4 Externe Versorgungsspannung für die digitalen Ein- und Ausgänge (PX878)

Beispiel: SPS-Anschluss (p-schaltend)

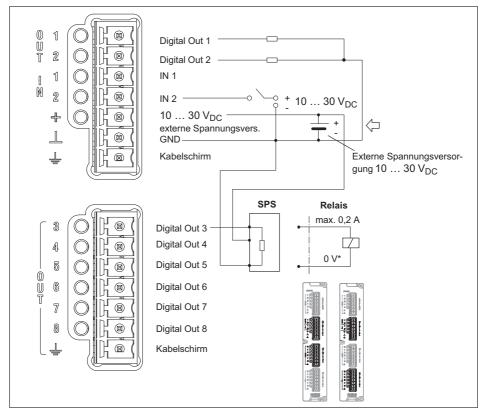


Abb. 8.53 PX878: Anschlussbelegung Digitalein- und Digitalausgang

Die Steuerausgänge stehen auf den Klemmen Digital OUT 1 und OUT 2 sowie auf OUT 3 bis OUT 8 zur Verfügung. Sie sind als High-Side-Schalter ausgeführt und gegen das PMX-Gehäuse galvanisch getrennt, nicht aber untereinander (siehe *Abb. 8.54*).

Die Steuereingänge stehen auf den Klemmen Digital IN 1 und IN 2 sowie auf IN 3 bis IN 8 zur Verfügung. Sie sind gegen das PMX-Gehäuse galvanisch getrennt, nicht aber untereinander (siehe *Abb. 8.54*).

Wichtig

Ausgangsverhalten nach dem Einschalten

- Die digitalen Ausgänge sind nach dem Einschalten hochohmig und bleiben so lange in diesem Zustand, bis in den aktiven Zustand gewechselt wird. Der Wechsel in den aktiven Zustand ist von der Firmware und den eingestellten Aktionen abhängig.
- Im aktiven Zustand wird die extern angeschlossene Spannungsquelle (siehe Klemmen + und ⊥) intern mit Hilfe eines elektronischen Schalters (High-Side-Switch) niederohmig durchgeschaltet.

Anmerkung: Der elektronische Schalter schaltet den + Pol der Spannungsquelle.

- Im aktiven Zustand ist der elektronische Schalter hochohmig. Wird für diesen Fall eine definierter Zustand erwartet (z. B. elektronischer Eingang einer Steuerung), so müssen Sie mit einem Abschlusswiderstand (Pull-Down) den hochohmige Zustand terminieren.
- Für die Steuereingänge müssen Sie ein externes Bezugspotenzial (\perp IN) anschließen, auf das sich die Steuereingangssignale beziehen.

Wichtig

Die I/O-Karte PX878 verfügt über eine galvanische Trennung zwischen Analog- und Digitalteil und dem Grundgerät.

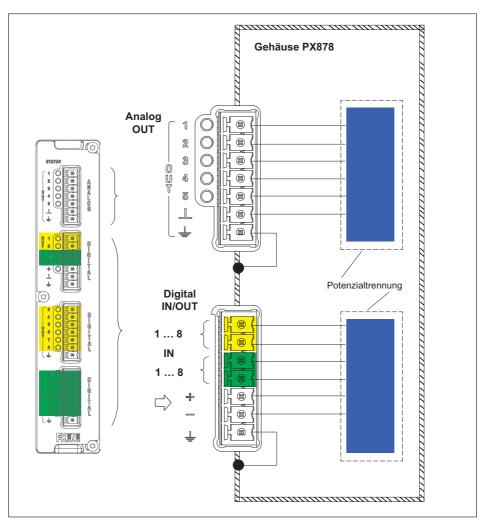


Abb. 8.54 Potenzialtrennung PX878

8.6 Kommunikationskarten

8.6.1 Anschlussbelegung PX01EC EtherCAT®-Feldbusmodul

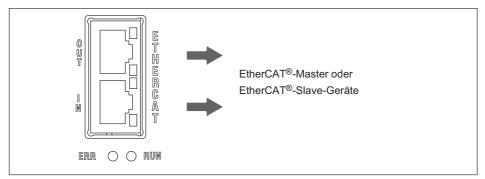


Abb. 8.55 EtherCAT®-Anschluss nach Norm¹⁾

8.6.2 Anschlussbelegung PX01EP EtherNet/IP™-Feldbusmodul

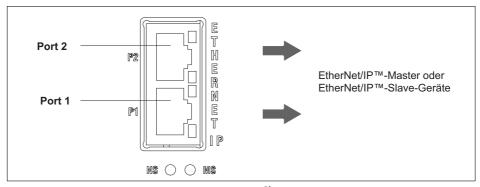


Abb. 8.56 EtherNet/IP™-Anschluss nach Norm¹)

¹⁾ Siehe Normenwerk der Nutzerorganisation

8.6.3 Anschlussbelegung PX01PN PR0FINET® IO-Feldbusmodul

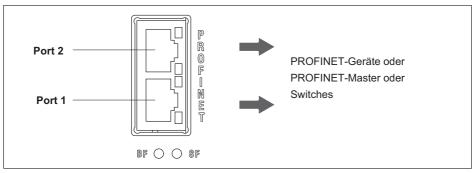


Abb. 8.57 PROFINET® IO-Anschluss nach Norm1)

8.7 TEDS-Aufnehmer

8.7.1 TEDS anschließen

TEDS steht für "Transducer Electronic Data Sheet". An das PMX-System können Aufnehmer mit elektronischem Datenblatt nach der Norm IEEE 1451.4 angeschlossen werden, welches das automatische Einstellen des Messverstärkers ermöglicht. Ein entsprechend ausgestatteter Messverstärker liest die Kenndaten des Aufnehmers (elektronisches Datenblatt) aus, übersetzt diese in eigene Einstellungen und Sie können die Messung starten.¹⁾

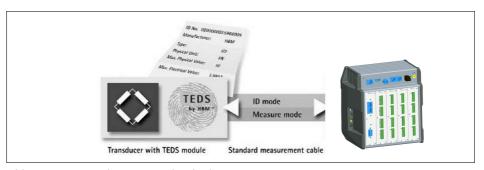


Abb. 8.58 PMX mit TEDS-Technologie

Der IEEE-Standard 1451.4 definiert ein allgemein anerkanntes Verfahren, mit dessen Hilfe Sensoren identifiziert werden können. Identifiziert wird der Sensor über das jeweilige Datenblatt, welches in elektronischer Form im Sensor, im Kabel oder im Stecker

¹⁾ Siehe Normenwerk der Nutzerorganisation

auf einem TEDS-Modul abgelegt wird. Der Verstärker kommuniziert mit diesem TEDS-Modul, liest das Datenblatt aus und stellt den Messverstärker entsprechend ein.

Im PMX werden zwei Anschlussarten von TEDS-Chips verwendet:

Zero-Wire-TEDS: PX455

Hier wird das TEDS-Modul in die Sensorleitungen des Aufnehmers geschaltet. Damit sind keine weiteren Leitungen nötig, die Messung wird zum Einlesen der TEDS-Informationen in das PMX kurzzeitig unterbrochen.

1-Wire-TEDS: PX401. PX460

Hier wir das TEDS-Modul mit 2 zusätzlichen Leitungen an den PMX-Messkanal angeschlossen (siehe Seite 82).

8.7.2 Inbetriebnahme des TEDS-Moduls

Sensoren können werksseitig mit TEDS ausgerüstet und beschrieben geliefert werden.

Mit einem TEDS-Editor können die bereits im Sensor oder Stecker montierten TEDS-Module auch nachträglich konfiguriert und parametriert werden.

8.7.3 Parametrieren des PMX mit TEDS

Ist ein Aufnehmer mit TEDS angeschlossen, der Parametrierdaten für einen Sensor enthält, kann dieser zur automatischen Parametrierung des PMX verwendet werden.

Die Messkarte PX455 verfügt über Zero-Wire-TEDS. Hierbei werden die Fühlerleitungen des Sensorkabels genutzt, um das TEDS-Modul auszulesen oder zu beschreiben.

Wichtig

PMX arbeitet nur mit der 2-Punkt-Skalierung des TEDS. Skalierungen, die als Tabelle oder Polynom hinterlegt sind, können nicht eingelesen werden. Sie können für solche Linearisierungen aber einen internen Berechnungskanal des PMX verwenden (siehe Kapitel 13, "Interne Berechnungskanäle", Seite 176).

Bei den Messkarten PX401 und PX460 wird das TEDS-Modul separat über eine zusätzliche Leitung angesprochen (1-Wire-TEDS).

Im PMX kann kanalweise eingestellt werden, wie das PMX nach dem Einschalten oder Anstecken von TEDS-Sensoren reagieren soll:

- · Vorhandenen TEDS ignorieren,
- TEDS nur einlesen und Messkanal damit konfigurieren, wenn ein TEDS-Sensor vorhanden ist,
- TEDS immer einlesen und Messkanal damit konfigurieren, ansonsten Fehler melden.

Mit dem Einschalten des PMX wird automatisch detektiert, ob ein Sensor mit TEDS angeschlossen ist. Die Daten werden ausgelesen und der Verstärkerkanal damit

parametriert. Wenn Sie einen Sensor mit TEDS im eingeschalteten Zustand austauschen, wird das neue TEDS-Modul ebenfalls selbstständig erkannt, Sie müssen es aber manuell aktivieren.

Wichtig

Der PMX-Webserver verfügt über keinen TEDS-Editor mit Lese- und Editierfunktion. Die catman[®] Easy/AP Software beinhaltet einen vollständigen TEDS-Editor. Damit können TEDS-Informationen von TEDS-Sensoren, die am PMX angeschlossen sind, gelesen und beschrieben werden.

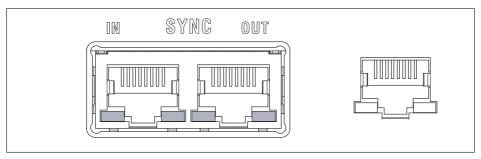
9 SYNCHRONISIERUNG UND ZEITERFASSUNG

Sollen Messsignale für die Verarbeitung und Analyse untereinander in zeitlichen Bezug gesetzt werden z. B. für Messdaten-Erfassungsaufgaben (DAQ), müssen diese synchron aufgenommen werden. Alle PMX-Module können daher untereinander synchronisiert werden. Dadurch wird ein zeitgleiches Messen auf allen Kanälen sichergestellt. Intern wird dazu in jedem PMX ein Zähler benutzt.

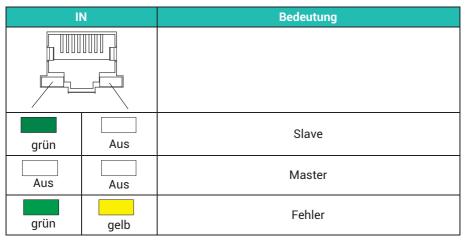
Verwendetes Zählerformat: 48 Bit integer

Zählerfrequenz: 153,6 kHz

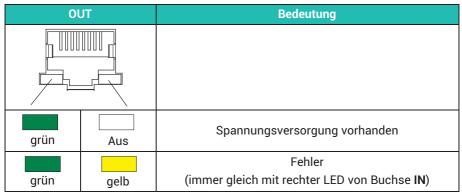
- Bei einer Abtastrate von 19,2 kHz (Werkseinstellung) erhöht sich der Zähler von Messwert zu Messwert damit um 8.
- Bei einer Abtastrate von 38,4 kHz erhöht sich der Zähler von Messwert zu Messwert um 4.


Diese Zähler werden zusammen mit jedem Messwerte übertragen. Die absolute Zeit der Messung muss von einer anderen Quelle kommen. Dies kann die interne Zeit des PMX oder einer externen Uhr sein. Das jeweilige Messdatenerfassungssystem setzt dann die Messwerte mit Zähler und dem Zeitstempel synchron zusammen.

Um einen exakten zeitlichen Bezug herzustellen zu können, sollten Sie die Kanäle mit den gleichen Filtereinstellungen parametrieren. Es wird keine automatische Laufzeit-korrektur für unterschiedliche Filter durchgeführt. Die Laufzeiten der Filter sind im Datenblatt angegeben.


9.1 Synchronisation über PMX-interne Synchronisierung

Alle Module werden automatisch synchronisiert, wenn sie über ein Ethernet-Patchkabel miteinander in Reihe verbunden sind. Dies ist die empfohlene Methode. Es werden damit die Zähler und die Trägerfrequenzen aller Messkarten vom Typ PX455 synchronisiert. Mit dieser Methode können aber lediglich PMX-Module miteinander synchronisiert werden.


Der Status der Synchronisierung sehen Sie an den LEDs der Sync-Buchsen. Die Zuordnung Sync-Master/Slave erfolgt automatisch, d. h. ein PMX-Gerät wird automatisch als Zeit-Master gewählt.

LEDs Buchse IN:

LEDs Buchse OUT:

Sie können maximal 20 PMX-Geräte miteinander synchronisieren. Das erste PMX-Gerät wird automatisch zum Master. Die maximale Leitungslänge zwischen benachbarten Geräten beträgt 30 m. Empfohlenes Kabel: Standard Ethernet Cat-5-SFTP.

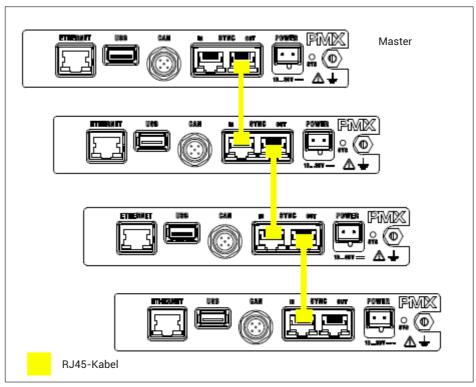


Abb. 9.1 Verbindung mehrerer PMX-Module

Wichtig

Der SYNC-Anschluss dient nicht zur Spannungsversorgung der Geräte.

Die SYNC-Buchsen sind kein Ethernet. Nicht mit Ethernet verbinden und nicht zu einem Ring verschalten.

Bei einem Stromausfall wird der Zeitstempel nicht gepuffert, sondern beginnt nach Neustart wieder bei Null.

9.2 Externe synchrone Messwerterfassung über einen NTP-Server im Netzwerk

Sollen Messungen mit verschiedenen Messsystemen synchron ausgeführt werden, ist eine synchrone Erfassung mithilfe eines externen Masters nötig.

Jedes PMX-Gerät verfügt über eine NTP-Uhrzeit, die von einem externen NTP-Server gestellt werden kann. Die NTP-Zeit wird über die Ethernet-Verbindung (TCP/IP) an alle Geräte verteilt.

Die PMX-Gerät senden dann die Messwerte mit Zählersignal und NTP-Zeit. Die Messdatenerfassungssysteme können daher mit diesen Informationen die Messwerte aller Geräte synchron erfassen.

Mit NTP können Sie beim Betrieb von PMX mit anderen Geräten Genauigkeiten von 1 ms und besser erreichen. Dies hängt aber von der Auslastung des verwendeten Netzwerkes und der Qualität des NTP-Master ab. In der HBM-Software catman[®] ist eine NTP-Software enthalten.

Verwendetes Zeitformat
Basis 1.1.1990
Zeitstempel: 64 bit

32 bit Sekunden

32 bit Sekundenbruchteile.

Auflösung (1/232)

Weitere Informationen zu NTP finden Sie auf http://www.ntp.org.

9.3 Messwerterfassung über Feldbus: EtherCAT®, PROFINET® IO, FtherNet/IP™

Die Messwerte können nicht über die Feldbusse synchronisiert und nicht zeitgestempelt werden, da die PX01EC EtherCAT®-Feldbuskarte die Erweiterung "Distributed Clocks" von EtherCAT® nicht unterstützt. Genauso verhält es sich bei den Feldbuskarten PROFINET® IO und EtherNet/IP™. Damit kann die Zeit von einem Feldbus-Master nicht an das PMX, das als Feldbus-Slave arbeitet, verteilt werden.

Die Messwerte und Daten, z. B. Spitzenwerte oder Statusinformationen werden in einem solchen Master-Slave-System aber deterministisch übertragen. Ebenso werden die Zähler der Messwerte übertragen, so dass der System-Master darüber die Messdaten synchron verarbeiten kann.

9.4 Vergleich der Synchronisationsmechanismen

PMX-Merkmal	PMX-eigene Synchronisation	Ethernet (NTP)
Synchronisation mit anderen Geräten	Nur PMX	PMX, QuantumX, MGCplus, Interogato- ren, andere
Zeiterfassung der Messwerte	Interner PMX-Zähler (48bit-Wert) plus PMX-Zeit	NTP-Zeitsignal von externem NTP-Server
Synchronisationsgenauigkeit	<1 µs	100 μs bis ca. 10 ms
Anzahl der synchronisierbaren Module	20	unbegrenzt

PMX-Merkmal	PMX-eigene Synchronisation	Ethernet (NTP)
Maximale Entfernung der Mo- dule zueinander	30 m	100 m (Ethernet), 10 km bei speziellen WLAN-Bridges
Synchronisationseinschwingzeit	sofort	ca. 20 min. bei Erst- start, ca. 2 min. bei Neustart
Synchronisationsmaster	Automatisch, Master ist das erste PMX	Empfohlen: separater NTP-Server/Master

Netzwerkzugriff und Fernwartung 10.1

Der Webserver im PMX verwendet das Hypertext Transfer Protocol (http) zur Übertragung von Daten über ein Rechnernetz und lädt damit seine Benutzeroberfläche (Hypertext-Dokumente) in einen Webbrowser. Eine verschlüsselte Übertragung mittels https (HyperText Transfer Protocol Secure) ist nicht möglich.

Um einen Zugriff über eines der Netzwerke zu ermöglichen, müssen verschiedene Protokolle (Ports) in der Firewall des PCs oder Servers freigeschaltet werden, um die aufgeführten Softwarekomponenten nutzen zu können.

Weboberfläche (PMX-Webserver)

Port-Typ	Nummer	Erläuterung
TCP	80, 55000	Parametrieren und Messen
UDP	31416, 31417	IPv4-Multicast für den HBM-Gerätescan
UDP	1900, 5353	Nur für Namensauflösung über Zeroconf (ähnlich Bon- jour)
UDP	1900	Nur für Namensauflösung über UPnP
TCP	8200	
UDP	137	Nur für Namensauflösung über NetBIOS
UDP	123	NTP-Zeitsynchronisation
UDP	514	System-Log-Meldungen (Protokoll)

catman / .NET-API / LabVIEW-Treiber / DIAdem-Treiber

Port-Typ	Nummer	Erläuterung
TCP	80, 55000	Parametrieren und Messen
UDP	31416, 31417	IPv4-Multicast für den HBM-Gerätescan

Hinweis

Ab Firmware 3.0 sind nur noch zwei gleichzeitige Ethernetverbindungen auf dem Port 55000 zulässig.

Wenn Sie eine dritte Verbindung öffnen, wird eine der beiden anderen beendet. Dafür wird intern der Zeitpunkt der letzten Aktivität der bestehenden Verbindungen erfasst und die ältere beendet.

CODESYS (nur bei WGX001)

Port-Typ	Nummer	Erläuterung
TCP	1217	Gateway
UDP	1217	
TCP	11740 11743	Kommunikation
UDP	1740 1743	Broadcasts
TCP	8080	WebVisu

10.2 Datensicherheit

Um das Risiko von Datensicherheitsverletzungen zu minimieren, empfehlen wir die folgenden organisatorischen und technischen Maßnahmen für das System, auf dem Ihre Applikationen laufen:

- Vermeiden Sie, PMX und Steuerungsnetzwerke offenen Netzwerken wie dem Internet auszusetzen. Verwenden Sie zusätzliche Sicherungsmaßnahmen, z. B. ein VPN für Remote-Zugriffe, und installieren Sie Firewall-Mechanismen. Insbesondere die Parametrier-Ports der Steuerung dürfen unter keinen Umständen ungeschützt aus dem Internet zugreifbar sein, siehe Abschnitt 10.1 auf Seite 134.
- Beschränken Sie den Zugriff auf autorisierte Personen. Ändern Sie eventuell vorhandene Standard-Passwörter und Zugriffsrechte bei der ersten Inbetriebnahme.
 Vorgehensweise zum Ändern der PMX Passwörter und der Benutzerrechte finden Sie im PMX-Webserver bei Passwort ändern und Benutzerrechte verwalten, siehe auch Abschnitt 10.3., "Benutzerrechteverwaltung und Passwörter", Seite 135.

10.3 Benutzerrechteverwaltung und Passwörter

10.3.1 Benutzerrechteverwaltung

Das PMX verfügt über eine 3-stufige Benutzerrechteverwaltung: OPERATOR, WARTUNG und ADMINISTRATOR. Einstellungen des PMX lassen sich nur dann anzeigen oder ändern, wenn Sie in der Benutzerebene WARTUNG oder ADMINISTRATOR sind. In der Benutzerebene OPERATOR sind nur die ÜBERSICHT, einige EINSTELLUNGEN zu SYSTEM und das MONITORING (der LINIENSCHREIBER) zugänglich.

Schalten Sie die Benutzerebene über um. Die Benutzerebene wird auf OPERATOR zurückgesetzt, falls 10 Minuten lang keine Eingabe erfolgt. Die in der Benutzerebene WARTUNG zugänglichen Einstellungen lassen sich über **Benutzerrecht verwalten** konfigurieren, wenn Sie sich in der Administrator-Ebene befinden.

10.3.2 Passwörter

In der Voreinstellung ist kein Passwort gesetzt und Sie können direkt auf eine andere Benutzerebene umschalten. Sie können jedoch für die Benutzerebenen WARTUNG und ADMINISTRATOR je ein Passwort setzen und damit den Zugriff auf die Einstellmenüs einschränken. In der Benutzerebene OPERATOR sind nur die ÜBERSICHT, einige EINSTELLUNGEN zu SYSTEM und das MONITORING (der LINIENSCHREIBER) zugänglich. In der Benutzerebene ADMINISTRATOR sind alle Einstellmenüs zugänglich.

Wählen Sie durch Anklicken aus, ob Sie das Passwort für WARTUNG oder für ADMINIS-TRATOR setzen möchten. Sie müssen das Passwort aus Sicherheitsgründen zwei Mal eingeben, bevor Sie den Dialog mit OK verlassen können und das Passwort aktiviert wird. Die Länge des Passwortes ist auf 10 Zeichen beschränkt. Es sind alle Zeichen

erlaubt. Klicken oder Tippen auf

schaltet die Anzeige der eingegebenen Zeichen

ein, 🎱

schaltet sie wieder aus.

Hinweis

Bewahren Sie das Administratorpasswort gut auf. Falls Sie das Passwort vergessen, müssen Sie sich an den technischen Support von HBM wenden, siehe auch Abschnitt 25.3, "Zurücksetzen des PMX-Administrator-Passwortes", Seite 442.

10.3.3 Benutzerebene durch Steuerung vorgeben

Ab der Firmware 3.02 können Sie bei einer Verbindung über Feldbus- oder Ethernet-Schnittstelle mit einem Befehl direkt die Benutzerebenen WARTUNG oder ADMINISTRATOR aktivieren, ohne ein Passwort einzugeben. Sie müssen dabei eine Zeit angeben, für die diese Deaktivierung gilt, maximal sind 24 Stunden möglich. Sie können die gewählte Benutzerebene auch vorzeitig deaktivieren oder den Zeitraum verlängern.

Die aktive Benutzerebene ist ab dem Umschalten und für den angegebenen Zeitraum auch im Browser verfügbar und wird entsprechend angezeigt. Nach einem PMX-Neustart (Power-down) müssen Sie erneut entriegeln.

11 INBETRIEBNAHME

Dieses Kapitel beschreibt die Inbetriebnahme des PMX, wie Sie es konfigurieren und wie Sie die Benutzeroberfläche bedienen.

11.1 Hardware einrichten

11.1.1 Spannungsversorgung / Aufnehmer

- Schließen Sie das Stromversorgungskabel und die Aufnehmer an das Modul an wie in Kapitel 8 "Elektrische Anschlüsse PMX", Seite 47 beschrieben.
- Schließen Sie optional das Bussystem an (EtherCAT® oder PROFINET® IO oder EtherNet/IP™).
- Schalten Sie die Stromversorgung ein.

11.1.2 Ethernet-Verbindung

Damit das PMX über den integrierten Webserver bedient und parametriert werden kann, müssen Sie es mit einem Gerät verbinden, das über einen Webbrowser verfügt, z. B. einem PC.

Bei einer Punkt-zu-Punkt-Verbindung verwenden Sie entweder ein Ethernet-Cross-Kabel oder stellen Sie sicher, dass die Ethernet-Schnittstelle ihres PCs über eine Autocrossing-Funktion verfügt. Dies ist bei aktuellen Geräten der Fall.

Verwenden Sie ausschließlich Kabel der Kategorie 5 (Cat 5) oder höher. Damit lassen sich Leitungslängen von bis zu 100 m erzielen. Sie können auch eine drahtlose Verbindung (WLAN) verwenden.

Wichtig

Stellen Sie sicher, dass der HTTP Port 80 in der Firewall geöffnet ist.

11.2 Integrierter PMX-Webserver

Systemvoraussetzungen

Für den Betrieb von PMX-Geräten in der aktuellen Version benötigen Sie ein Endgerät (z. B. PC oder Tablett mit Maus) mit einem aktuellen Webbrowser (Internet-Explorer Version > 9.0, Firefox oder Chrome) und einer Bildschirmauflösung von mindestens 1024 x 768.

Auf dem PC muss mindestens Windows XP installiert sein.

11.3 PMX mit einem PC (HOST) oder über ein Netzwerk verbinden

Schließen Sie das PMX über die Buchse ETHERNET an einen PC/Laptop oder an ein Netzwerk an: ETMERMET

Werkseinstellung

- Das PMX bezieht beim Hochfahren des Rechners die IP-Adresse über
 - DHCP (automatische Adressvergabe gemäß RFC2131 und RFC2132) oder
 - den Auto-IP-Bereich APIPA (RFC5735), d. h. im Bereich 169.254.xxx.xxx
- Der Gerätename des PMX ist "pmx" (änderbar).

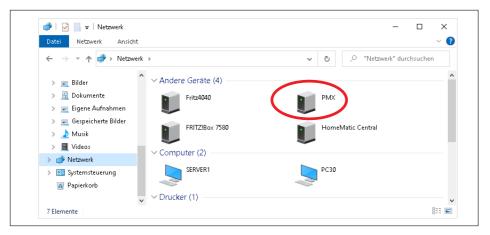
Möglichkeiten der Adressvergabe

- Über eine bereits eingestellte IP-Adresse (nicht ab Werk).
- Falls keine feste IP-Adresse vergeben wurde, wartet das PMX auf eine Adresse vom DHCP-Server. Wenn kein DHCP-Server antwortet, wird im Auto-IP-Bereich RFC5735 eine IP-Adresse automatisch gewählt.
- Wenn das PMX auf DHCP gestellt ist (Werkseinstellung), muss auch der PC DHCP verwenden.

Welche Möglichkeiten gibt es, um das PMX im Netzwerk zu finden?

Option	Technologie	Betriebssystem
Α	UPnP	ab Windows 7
В	NetBIOS	ab Windows XP
С	Zeroconf (ähnlich Bonjour-Dienst)	Apple; Linux; Windows, wenn "Bonjour Druckdienste" installiert ist.
D	Broadcast-Ping	Die Adresse hängt von den Netzwerkeinstellungen ab. Für eine Subnetzmaske von z. B. 255.255.0.0 und eine Netzwerkadresse von 192.168.169.123 ergibt sich 192.168.255.255 als Broadcast-Adresse. Die Methode funktioniert allerdings nicht mit allen Windows-Konfigurationen.

Tipp

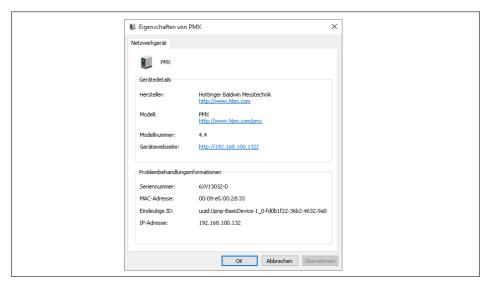

Falls keine Netzwerkverbindung zustande kommt: Netzwerkkabel neu stecken! Warten Sie danach mindestens eine Minute, da die Vergabe von Adressen über APIPA länger dauern kann.

Option A:

Verbindung über UPnP (Universal Plug & Play) ab Windows 7

Diese Verbindung ist abhängig von den Netzwerk-Einstellungen und auch ohne DHCP und im Auto-IP-Bereich¹⁾ möglich. Sie ist nicht verfügbar bei PMX—PC-Verbindung (ohne Netzwerk) und in öffentlichen Netzwerken.

- Öffnen Sie die Netzwerkumgebung des PCs.
 - Unter Andere Geräte finden Sie ein oder mehrere PMX.
- Doppelklicken Sie auf pmx.



Tipp

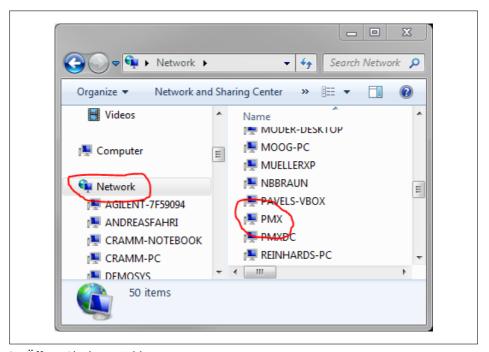
Klicken Sie mit der rechten Maustaste auf PMX, dann finden Sie unter **Eigenschaften** Details wie Gerätewebsite, Seriennummer des PMX, IP-Adresse etc.

¹⁾ Unter Windows 7 muss Medienstreaming eingeschaltet sein (Systemsteuerung > Netzwerk und Internet > Netzwerk und Freigabecenter > MEDIENSTREAMING).

Falls mehrere PMX im Netz vorhanden sind, erscheint noch folgender Dialog:

- Gewünschtes PMX anhaken.
- Auf Verbinden klicken.

Sie gelangen zur Übersicht:



Damit können Sie die aktuellen Messwerte sehen und – bei entsprechender Benutzerebene – das PMX einstellen.

Option B:

Verbindung über NetBIOS (-Namen) unter Windows

- Öffnen Sie die Netzwerkumgebung des PCs.
 - In der Netzwerkumgebung erscheint PMX.

- Öffnen Sie Ihren Webbrowser.
- ▶ Geben Sie *pmx/* in der Adresszeile ein.

Namensvergabe bei mehreren PMX-Geräten im Netzwerk:

- Erstes Gerät: PMX
- Zweites Gerät: PMX-2
- Drittes Gerät: PMX-3 etc.

Damit können Sie die aktuellen Messwerte sehen und – bei entsprechender Benutzerebene – das PMX einstellen.

Wichtig

Falls kein DHCP-Server gefunden wird und keine feste (statische) IP-Adressse im Gerät gesetzt ist, verwendet PMX automatisch eine IP-Adresse gemäß RFC5735 (APIPA, 169.254.xxx.xxx).

Falls eine statische IP-Adresse eingestellt wurde, stehen 2 IP-Adressen zur Verfügung: die eingestellte statische Adresse und eine IO-Adresse aus dem automatischen IP-Bereich.

Option C:

Verbindung über Zeroconf/Bonjour

Laden Sie die Software "Bonjour Druckdienste" von Apple herunter und installieren Sie sie:

http://support.apple.com/kb/DL999?viewlocale=de_DE&locale=de_DE

Falls bereits Apple-Software installiert wurde, befindet sich *Bonjour* meistens schon auf dem PC.

Geben Sie in der Adresszeile Ihres Webbrowsers pmx.local. ein.

Dann können Sie die aktuellen Messwerte sehen und – bei entsprechender Benutzerebene – das PMX einstellen.

Wichtig

Den Gerätenamen ("pmx" ab Werk) sowie die Netzwerkeinstellungen (DHCP, IP-Adresse, Subnetzmaske, Gateway) können Sie dauerhaft ändern (Menüpunkt Netzwerkeinstellungen).

11.3.1 Netzwerkeinstellungen über USB-Speicher setzen

Wenn Sie das PMX nicht im Netzwerk finden, können Sie die Netzwerkeinstellungen auch mit einem USB-Speicherstick einrichten.

- ► Erstellen Sie auf einem USB-Speicherstick im Stammverzeichnis (Hauptverzeichnis) eine Textdatei mit dem Namen "pmx.conf".
- Geben Sie einen Text ähnlich dem in den folgenden Beispielen ein. Ändern Sie dabei Gerätenamen und Netzwerkeinstellungen.

Beispiel 1:

Diese Datei pmx.conf setzt den Gerätenamen auf "pmx_neuer_name", und schaltet das PMX in den DHCP-Modus

```
<pmx type="set">
  <hostname>pmx_neuer_name</hostname>
  <network>
    <dhcp>true</dhcp>
  </network>
</pmx>
```

Beispiel 2:

Diese Datei pmx.conf setzt den Gerätenamen auf "pmx" und legt eine feste IP-Adresse fest:

4. Stecken Sie diesen Stick an die USB-Buchse des PMX an, während das PMX normal in Betrieb ist.

Die Einstellungen werden sofort geändert, sind aber nicht sofort in anderen Netzwerkgeräten sichtbar. Wir empfehlen, das PMX durch Unterbrechen der Stromversorgung neu zu starten. Das PMX ist dann unter den neuen Einstellungen im Netz zu finden.

Wichtig

Dieser USB-Stick stellt jedes PMX sofort nach dem Einstecken um! Die Datei sollte deshalb gelöscht, umbenannt oder in ein Unterverzeichnis verschoben werden.

11.3.2 Netzwerkeinstellungen über den Webbrowser ändern

11.4 Anzeige- und Bedienmöglichkeiten

Wichtig

Die detaillierte Beschreibung der PMX-Bedienung finden Sie in der Onlinehilfe zum PMX. Laden Sie die aktuelle Firmware von der HBM-Webseite für PMX herunter: https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

Die Übersicht zeigt die im PMX vorhandenen Einschübe (Verstärker) mit den aktuellen Messwerten, den Zustand der digitalen Ein-und Ausgänge und Bussysteme (soweit vorhanden) und der berechneten Kanäle.

Tippen oder klicken Sie auf eines dieser Symbole oder auf eine der Stellen, an denen der Cursor zum Handsymbol wird, um in den Dialog zum Ändern der Einstellung zu gelangen.

Über das Menüsymbol rufen Sie das Einstellmenü auf, von dem aus Sie alle Dialoge über die tabellarische Menüstruktur erreichen. Bei allen Menüpunkten, die

in der rechten unteren Ecke ein Dreieck eingeblendet haben, sind weitere Untermenüs vorhanden. Sobald Sie einen Menüpunkt gewählt haben, wird neben dem Symbol für das Einstellmenü der Menüpfad angezeigt.

Wichtia

Falls Sie eine Einstellung ändern, wird mit dem Diskettensymbol rechts unten angezeigt, dass die Einstellung zunächst nur im RAM gespeichert ist. Tippen oder klicken Sie auf dieses Symbol, um die Einstellung netzausfallsicher im Flash-EPROM zu speichern.

Verwendete Symbole und Anzeigen

Das Symbol ruft die Benutzerverwaltung auf.

Das Symbol ruft die Sprachauswahl auf und Sie können in eine der angezeigten Sprachen umschalten.

Das Symbol ruft die Favoritenliste auf. Sie können jede Ansicht zur Favoritenliste hinzufügen.

Das Symbol ruft die Hilfe auf.

Die LED links unten in der Statuszeile zeigt den Status des PMX:

Die grüne LED signalisiert, dass alles in Ordnung ist.

Die gelbe LED signalisiert, dass ein Fehler in einem oder mehreren Kanälen vorliegt, die PMX arbeitet jedoch weiter.

Die rote LED signalisiert, dass ein kritischer Fehler vorliegt. Es können keine Messwerte mehr erfasst oder verarbeitet werden. Möglicherweise kann auch die Netzwerkverbindung zum PMX verloren gegangen sein. In diesem Falle kann das PMX weiter messen.

Die kleine Grafik in der Statusleiste unten (A, siehe *Abb. 11.1*) zeigt die Auslastung des PMX (0 ... 100%). Sie können damit abschätzen, ob bei der gewählten Messrate

- die festgelegten Berechnungen erfolgen können,
- die Anzahl der Berechnungen reduziert werden muss,
- eine der Messraten herabgesetzt werden muss,
- eine CODESYS-Applikation die Kapazität der CPU überlastet.

Abb. 11.1 Übersichtsseite des PMX-Webbrowsers mit der Geräte- und Signaldarstellung des verbundenen PMX.

Messwertdarstellung

Die Darstellung der Messwerte und der Daten aus den Berechnungskanälen des PMX können Sie für jeden Messkanal individuell anpassen. Dies betrifft die Anzahl der Nachkommastellen und die Schrittweite der Ziffernanzeige. Damit stellen Sie die Anzeige auf die Anforderungen der Anwendung ein.

Messwertanzeige: Klick auf die gewünschte Messwertanzeige in den Verstärkereinstellungen.

Berechnungskanäle: Auswahl im Drop-Down-Menü Nachkommastellen.

Diese Einstellungen wirken sich nur auf die Anzeige im PMX-Webserver aus und betreffen nicht die Werte im PMX oder die Schnittstellenausgabe.

Beispiel: Einstellung mit 2 Nachkommastellen und einer Schrittweite von 2 Digits, d. h. 0,02, 0,04, 0,06, 0,08 ...

11.5 Menüstruktur PMX-Webserver

11.5.1 Überblick über alle Geräteeinstellungen

Jeder Menüpunkt verfügt über eine Online-Hilfe die Sie durch einen Klick auf dieses Symbol aufrufen.

Ein Klick auf dieses Symbol öffnet die Menüseite. Über **EIN-STELLUNGEN** parametrieren Sie das PMX. Wählen Sie den gewünschten Menüpunkt durch Anklicken.

11.5.2 Werkseinstellungen wieder herstellen

Durch das Laden der Werkseinstellung werden folgende Einstellungen gelöscht:

- alle Kanal- und Verstärkereinstellungen (Messkanäle und berechnete Kanäle, z. B. Min/Max-Werte),
- alle Geräteeinstellungen (z. B. Parametersätze).

Nicht gelöscht werden:

- die Netzwerkkeinstellungen,
- die Passwörter für die unterschiedlichen Benutzerebenen (OPERATOR, WARTUNG, ADMINISTRATOR),
- CODESYS-Applikationen und CODESYS-Web-Visualisierungen (bei Aktualisierungen, die auf einer Firmware 1.46 oder h\u00f6her aufgespielt werden).

11.6 Einschaltverhalten des PMX

Wichtig

Das Initialisieren des PMX dauert einige Sekunden. In dieser Zeit findet ein Selbsttest aller Module statt. Dieser Zustand wird durch ein Blinken aller LEDs signalisiert. Nach durchgeführtem Selbsttest lesen Sie den Zustand jeder Komponente an der entsprechenden Status-LED ab, siehe Abschnitte 8.2.3 bis 8.2.5 (ab Seite 51).

- Beim Einschalten des PMX werden die digitalen und analogen Ausgänge auf 0 V gesetzt.
- Beim Hochfahren des Systems bleiben die analogen Ausgänge auf 0 V gesetzt.
- Nach dem Hochfahren werden konfigurierte und gültige Ausgänge auf den festgelegten Wert zwischen -10 und + 10 V gesetzt.
- Ungültige (nicht konfigurierte) Ausgänge gehen auf 0 V (Safe Value).
 Wird ein Ausgang während des Betriebes ungültig, wird er ebenfalls auf 0 V gesetzt.
- Sie können für den Save Value auch einen anderen Wert festlegen, die Werkseinstellung ist 0 V.

11.7 Betriebsverhalten des PMX

Das PMX ist gemäß seinen Einsatzbestimmungen für messtechnische Aufgaben mit integrierten Kontroll- und Regelungsaufgaben geeignet. Jedoch darf es nicht in Bereichen eingesetzt werden, in denen Fehlverhalten zu Personen- oder Sachschäden führen können.

Um die Betriebssicherheit der Anlagen zu erhöhen, in denen PMX eingesetzt wird, wurden einige Maßnahmen im PMX implementiert.

Einrichtbetrieb

Hier kann für jedes Messsignal ein Vorgabewert (Testsignal) simuliert werden, ohne dass ein tatsächlicher Messwert aus der Anlage vorliegen muss. Damit testen Sie nachgelagerte Funktionen und Komponenten. Dies funktioniert auch bei den Analogausgängen (±10 V).

Laufender Betrieb / Messbetrieb

- Digitalausgänge: hier können Sie detailliert den Geräte- oder Messwertstatus über Hardwareausgänge, Feldbus oder Ethernet (PC) signalisieren.
- Grenzwerte: Normalerweise wird bei der Auswertung der Status des Messwertes berücksichtigt, d. h., bei ungültigem Messwert erfolgt kein Schaltvorgang. Sie können dies über die Option *Ignoriere Messstatus* unterbinden, d. h., auch bei fehlerhaftem (ungültigem) Messwert werden dann die Grenzwertbedingungen ausgewertet.

Ein Messwert ist ungültig und wird entsprechend gekennzeichnet, wenn

- eine Überschreitung des Eingangsbereichs des Messverstärkers vorliegt,
- · eine Kalibrierung läuft,
- · die Werkskalibrierung fehlerhaft ist,
- in der Einstellung TEDS verwenden, falls vorhanden die im TEDS hinterlegte Einstellung nicht realisierbar ist (z. B. falscher Aufnehmertyp, Messbereich nicht vorhanden, ungültiger Filterwert etc.),
- der TEDS-Inhalt nicht korrekt ausgelesen werden kann oder kein TEDS vorhanden ist, obwohl TEDS erforderlich eingestellt ist.

Digitaleingänge

Diese müssen Sie gegen +Ub verschalten (SPS-Logik). Ein offener Eingang wird durch den internen Pull-Down-Widerstand als Low erkannt.

11.8 Signallaufzeiten

Typische Signallaufzeiten der einzelnen PMX-Hardware- und Softwarekomponenten:

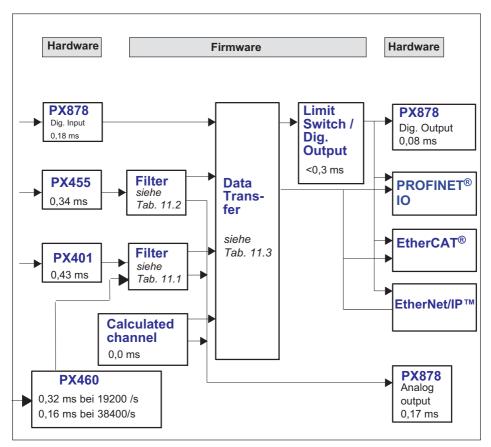


Abb. 11.2 Signallaufzeiten

Filter-Gruppenlaufzeit

Grenzfrequenz fc (in	Laufzeit (in ms)		Laufzeit
Hz, -3dB)	Bessel	Butterworth	
60001))	0.07	0.94	
50001))	0.08	0.12	
3000	0.10	0.14	
2000	0.20	0.28	
1000	0.42	0.61	
500	0.86	1.23	
200	2.00	3.10	
100	4.15	6.17	
50	8.45	12.5	
20	21.4	30.7	
10	39	47	
5	74	91	
2	174	216	
1	340	430	
0.5	680	840	
0.2	1680	2090	
0.1	3360	4200	

¹⁾ Grenzfrequenz 5000/6000 Hz nur bei PX460

Tab. 11.1 Laufzeiten für **PX401** und **PX460**

Grenzfrequenz fc (in	Laufzeit (in ms)	
Hz, -3dB)	Bessel	Butterworth
2000	0.16	0.23
1000	0.42	0.60
500	0.85	1.24
200	2.00	3.10
100	4.15	6.17
50	8.45	12.5
20	21.4	30.7
10	39	47
5	74	91
2	174	216
1	340	430
0.5	680	840
0.2	1680	2090
0.1	3360	4200

Tab. 11.2 Laufzeiten für PX455

Data Transfer Rate	Laufzeit in ms		
(in Hz)	Minimum	Typical	Maximum
1200	0.1	0.52	0.93
2400 (Werkseinstellung)	0.1	0.31	0.52
4800	0.1	0.21	0.31
9600	0.1	0.16	0.21

Tab. 11.3 Daten-Laufzeiten

Beispiel

Signallaufzeit eines Sensorsignals über ein Bessel-Filter zum Analogausgang:

Signalpfad PX455 -> 2 kHz Bessel-> PX878 $(0,34^*)$ + 0,16 (Tab. 11.3) + 0,17*) ms = 0,67 ms

Feldbus

Verzögerung, bis das Signal im zyklischen Datenrahmen erscheint:

^{*)} Siehe Schaubild auf Seite 154

Protokoll	Data Copy Rate	Laufzei	t in ms
	(in Hz)	Typisch	Maximal
PROFINET® IO	1200 (Standard und Max.)	1,8 + frame_cycle /2	2,4 + frame_cycle
EtherCAT®	2400 (Standard) 4800 9600 (Maximal) ¹⁾	1,0 + frame_cycle /2	1,5 + frame_cycle
EtherNet/IP™	1200 (Standard und Max.)	1,8 + frame_cycle /2	2,4 + frame_cycle

¹⁾ Die EtherCAT®-Datenkopierrate hat nur geringe Auswirkungen auf die Signallaufzeit. Zwischen Kopierraten von 2,4 und 9,6 kHz macht der Vorteil theoretisch 0,16 ms aus, was deutlich kleiner ist als die statistische Streubreite.

Tab. 11.4 Feldbus-Laufzeiten

"Data Copy Rate" ist die Zeit, mit der Daten in das Feldbusmodul in Steckplatz 0 kopiert werden. frame_cycle ist die Rate des zyklischen Datenrahmens, die im Buskonfigurations-Tool eingestellt wurde.

Beispiel

Signallaufzeit eines Sensorsignals über den EtherCAT®-Feldbus:

Signalpfad: PX455 -> 2 kHz Bessel-> Data transfer @2,4 kHz -> EtherCAT @2,4 kHz PX01EC

 (0.34^*) + 0.16 (Tabelle 1.2) + 0.31 + 1.2) ms = 2.0 ms (mittlere Signallaufzeit von Eingangsklemme bis EtherCAT®-Feldbus)

^{*)} Siehe Schaubild auf Seite 154

11.9 Feldbusintegration

Wichtig

Achten Sie darauf die richtige Gerätebeschreibungsdatei zu verwenden (siehe auch Abschnitt 16.1, "Gerätebeschreibungsdatei", Seite 263).

11.9.1 PROFINET® IO-Verbindung

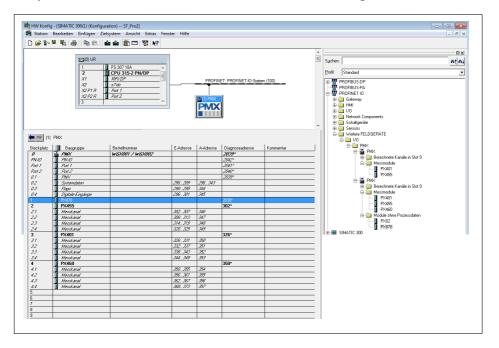
- Verbinden Sie über Ethernet-Kabel (Cat 5) PMX-Geräte(e) und PROFINET®-Master (beachten Sie die Topologie).
- Beachten Sie bei Verwendung des PROFINET®-IRT-Protokolls die Reihenfolgen der PMX-RJ45-Buchsen: Port 1 (unten), Port 2 (oben).
- Schalten Sie bei PROFINET®-IRT in der SPS-Konfigurationssoftware das IRT-Protokoll ein und geben Sie die Kabellängen und die Ports der Verdrahtung an (siehe auch Abschnitt 8.2.4, "Feldbus-LEDs", Seite 53).

Hinweis

Der Bus braucht keine Abschlusswiderstände, da es sich um aktive Teilnehmer handelt.

Verwenden Sie zur Konfiguration des PMX im Master die Gerätebeschreibungsdatei (GSDML). Sie befindet sich auf der HBM-Website für PMX und Sie können Sie im PMX selbst erzeugen und von dort herunterladen.

Vorgehensweise


- Ändern Sie die Benutzerebene auf ADMINISTRATOR.
- Gehen Sie zu EINSTELLUNGEN -> FELDBUS.
- Geben Sie bei No. Transm. Calc. Channels an, wie viele Kanäle übertragen werden sollen.
- Klicken Sie auf Create GSDML File.

Die Datei wird im Verzeichnis "PROFINET" gespeichert.

Auf das Verzeichnis können Sie auch mit einem beliebigen Browser zugreifen. Geben Sie als Adresse *http://<PMX-Name>/public/PROFINET/* ein, um das Verzeichnis "PROFINET" zu öffnen. Für <PMX-Name> müssen Sie den Netzwerknamen oder die IP-Adresse des PMX angeben.

Die Konfiguration des PROFINET®-Systems erfolgt über das Engineering-Tool des Lieferanten Ihres PROFINET®-Masters.

Beispiel mit SIEMENS SPS unter STEP7 mit dem SIMATIC-Manager oder TiA-Portal

11.9.2 EtherCAT®-Verbindung

Verbinden Sie über Ethernet-Kabel (Cat 5) PMX-Geräte(e) und EtherCAT®-Master. Beachten Sie die Topologie: IN (unten) / OUT (oben) der RJ45-Buchsen auf der PX01EC.

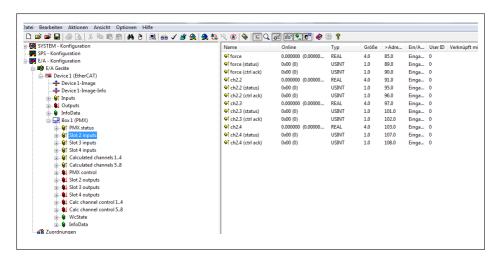
Hinweis

Der Bus braucht keine Abschlusswiderstände, da es sich um aktive Teilnehmer handelt.

Verwenden Sie zur Konfiguration des PMX im Master die Gerätebeschreibungsdatei (ESI). Sie befindet sich auf der HBM-Website für PMX und Sie können Sie im PMX selbst erzeugen und von dort herunterladen.

Vorgehensweise

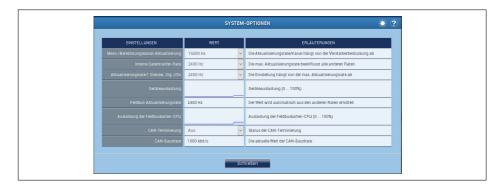
- Ändern Sie die Benutzerebene auf ADMINISTRATOR.
- Gehen Sie zu EINSTELLUNGEN -> FELDBUS.


- Geben Sie bei No. Transm. Calc. Channels an, wie viele Kanäle übertragen werden sollen.
- Klicken Sie auf Create ESI File (EtherCAT®).

Die Datei wird im Verzeichnis "EtherCAT" gespeichert.

Auf das Verzeichnis können Sie auch mit einem beliebigen Browser zugreifen. Geben Sie als Adresse *http://<PMX-Name>/public/EtherCAT/* ein, um das Verzeichnis "Ether-CAT" zu öffnen. Für <PMX-Name> müssen Sie den Netzwerknamen oder die IP-Adresse des PMX angeben.

Die Konfiguration des EtherCAT®-Systems erfolgt über das Engineering-Tool des Lieferanten Ihres EtherCAT®-Masters.


Beispiel mit Beckhoff-SPS mit dem TwinCAT-System-Manager

11.9.3 Einstellen der Feldbus-Aktualisierungsrate

- Ändern Sie die Benutzerebene auf ADMINISTRATOR.
- Gehen Sie zu EINSTELLUNGEN -> SYSTEM -> GERÄT-> SYSTEM-OPTIONEN.
- Wählen Sie die Interne Datentransferrate aus. Die Feldbus-Aktualisierungsrate folgt diesem Wert bis zum feldbusspezifischen Maximum.

Die Änderung ist sofort wirksam. Klicken Sie zum dauerhaften Speichern auf das Diskettensymbol unten rechts.

11.9.4 EtherNet/IP™-Verbindung

Verbinden Sie über Ethernet-Kabel (Cat 5) PMX-Geräte(e) und Ihren EtherNet/ IP™-Scanner.

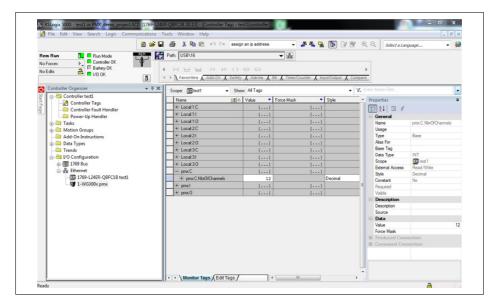
Beide Ports P1 und P2 haben dieselben IP- und MAC-Adressen.

Hinweis

Der Bus braucht keine Abschlusswiderstände, da es sich um aktive Teilnehmer handelt

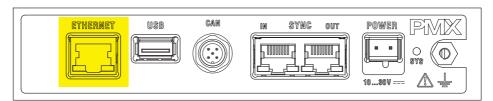
Verwenden Sie zur Konfiguration des PMX im Scanner die Gerätebeschreibungsdatei (EDS). Sie befindet sich auf der HBM-Website für PMX und Sie können Sie im PMX selbst erzeugen und von dort herunterladen.

Vorgehensweise


- Ändern Sie die Benutzerebene auf ADMINISTRATOR.
- Gehen Sie zu EINSTELLUNGEN -> FELDBUS.
- Geben Sie bei No. Transm. Calc. Channels an, wie viele Kanäle übertragen werden sollen.
- Klicken Sie auf Create EDS File.

Die Datei wird im Verzeichnis "EtherNet_IP" gespeichert.

Auf das Verzeichnis können Sie auch mit einem beliebigen Browser zugreifen. Geben Sie als Adresse *http://<PMX-Name>/public/EtherNet_IP/* ein, um das Verzeichnis "EtherNet_IP" zu öffnen. Für <PMX-Name> müssen Sie den Netzwerknamen oder die IP-Adresse des PMX angeben.


Die Konfiguration des **EtherNet/IP**™Systems erfolgt über das Engineering-Tool des Lieferanten Ihres EtherNet/IP™-Scanners.

Beispiel mit Allan-Bradley SPS-ControlLogix und LogixStudio

12.1 Messsystem vorbereiten

1. Verbinden Sie das PMX über die Ethernet-Buchse mit Ihrem PC, siehe *Abschnitt* 11.3, Seite 138.

Kabel: Standard Ethernetkabel (Cat 5)

2. Schließen Sie Ihre Aufnehmer an die Messkarten an (Steckklemmen) siehe Abschnitte 8.4 bis 8.7 (ab Seite 63).

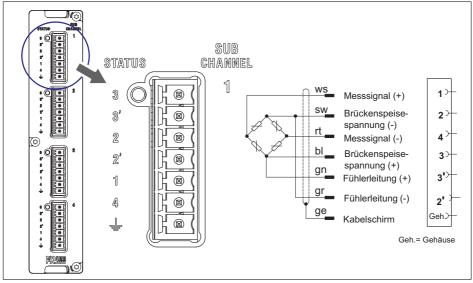
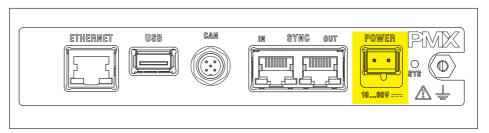


Abb. 12.1 Beispiel: Kraftaufnehmer / Wägezelle am PX455


Hinweis

Die Aufnehmer sind auch anschließbar, wenn Sie bereits die Spannungsversorgung angeschlossen haben.

3. Schließen Sie die Spannungsversorgung an (10 ... 30 V_{DC}), siehe *Abschnitt 8.3,* "Versorgungsspannung", Seite 62.

Die Leistung der Versorgung muss mindestens 15 W betragen.

Das PMX bootet und zeigt danach seinen Systemzustand (siehe *Abschnitt 8.2.3*). Die System-LED muss grün leuchten. Dieser Vorgang dauert einige Sekunden.

Das PMX ist werksseitig auf DHCP (automatische Adressvergabe) eingestellt. Stellen Sie Ihren PC ebenfalls auf DHCP. Damit erfolgt das Einstellen der IP-Adressen automatisch. Dieser Vorgang dauert mehrere zehn Sekunden.

Rufen Sie den PMX-Webserver durch Eingabe von *PMX/* in der Adresszeile Ihres Browsers auf.

Der Webserver im PMX meldet sich mit dem Startbildschirm (Übersicht).

Das PMX-System ist nun messbereit und Sie können Live-Messwerte sehen.

Klicken Sie auf das Weltkugel-Symbol , um in eine andere Sprache des PMX-Webservers zu wechseln.

Falls mehrere PMX-Geräte im Netz vorhanden sind, erscheint diese Auswahlbox vor der Übersicht:

- Setzen Sie bei dem gewünschten PMX den Haken.
- Bestätigen Sie mit Verbinden.

Über die Blinken-Funktion kann das Gerät durch Blinken aller Geräte-LEDs identifiziert werden.

- 4. Konfigurieren des PMX mit dem Webbrowser
- ► Klicken Sie auf das Benutzersymbol und wechseln Sie in den Service- oder Administratorlevel. Je nach Berechtigung können Sie folgende Einstellungen vornehmen
 - Sensoren zuweisen
 - Finheiten zuweisen
 - Filter einstellen
 - Maximal- und Minimalwerte überwachen
 - Grenzwerte überwachen
 - Virtuelle (berechnete) Kanäle einrichten
 - Digitale und analoge Ein- und Ausgänge konfigurieren
 - Parametersätze erstellen und verwalten

Hinweis

Durch einen Klick auf das Diskettensymbol werden geänderte Einstellungen netzausfallsicher im Gerät gespeichert.

Weitere Hilfe erhalten Sie durch einen Klick auf das Hilfe-Symbol .

Es öffnet sich die Webserver-Hilfe mit den für die angezeigte Seite relevanten Informationen.

12.2 Typischer Bedienablauf (Messbeispiel)

Die Konfiguration des PMX-Messverstärkers und seiner Messkanäle erfolgt am einfachsten über den PMX-Webbrowser. Die Sensoren, Ethernetkabel und Spannungsversorgung müssen korrekt angeschlossen sein (siehe Abschnitte 8.3 und 8.4 ab Seite 62 sowie Abschnitt 11.3, Seite 138).

In der Übersicht wird das PMX mit allen Messkarten und Signalen sowie allen Geräteinformationen dargestellt.

schützt), dann über das Menüsymbol in Einstellungen -> Verstärker.

Alternativ können Sie auch durch Anklicken des gewünschten Kanals oder der gewünschten Funktion (z. B. einem Grenzwert) direkt in das passende Einstellmenü wechseln. Voraussetzung ist immer die Berechtigung in der jeweiligen Benutzerebene.

Nehmen Sie hier für jeden Einschub (Slot) und jeden Kanal die passenden Sensor- und Signaleinstellungen vor.

Eine andere Messkarte wählen Sie durch Anklicken der Slotnummer:

orange = ausgewählte Messkarte, blau = vorhandene Messkarten im PMX, grau = leerer Einschubplatz (Slot).

Beispiel: Konfigurieren mit Kraftaufnehmer

Im oberen Beispiel ist Einschub 2 mit einer PX455 bestückt und am 1. Kanal ein Kraftaufnehmer S2M 1000N (DMS Vollbrücke) angeschlossen.

- Der PMX-Verstärkerkanal wird auf den Sensortyp Vollbrücke mit dem Messbereich 4 mV/V eingestellt.
- Die Skalierung (Charakteristik) wird auf 1000 N bei einer Sensor-Empfindlichkeit von 2,010270 mV/V eingestellt. Falls der Sensor über TEDS verfügt, wird der Kanal in der Voreinstellung automatisch parametriert. Andernfalls aktivieren Sie die TEDS-Einstellungen auf der 2. Seite der jeweiligen Verstärkereinstellungen.

- Als Filtertyp wird hier Bessel mit einer Grenzfrequenz von 5 Hz eingestellt.
- Die Daten sind nun im PMX geändert und werden durch das Diskettensymbol in der Statusleiste angezeigt.
- Zur netzausfallsicheren Speicherung der Einstellung im PMX klicken Sie dieses Symbol an und bestätigen Sie die Sicherheitsabfrage.

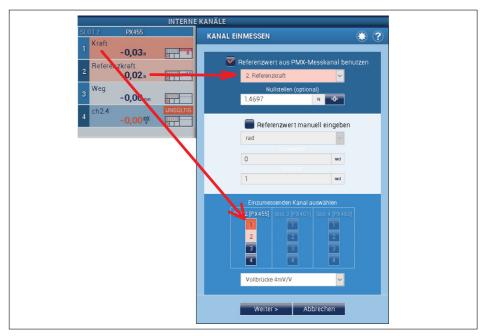
Beispiel: Konfigurieren des PMX mit Dehnungsaufnehmer

Im Beispiel ist Einschub 2 mit einer PX455 bestückt und am 2. Kanal ein Dehnungsaufnehmer SLB700A angeschlossen.

- Der PMX-Verstärkerkanal wird auf den Sensortyp Vollbrücke mit dem Messbereich 4 mV/V eingestellt.
- Die Skalierung (Charakteristik) wird auf 500 μm/m bei einer Sensor-Empfindlichkeit von 1,5 mV/V eingestellt.
- Als Filtertyp wird hier Bessel mit einer Grenzfrequenz von 5 Hz eingestellt.
- Die Daten sind nun im PMX geändert und werden durch das Diskettensymbol in der Statusleiste angezeigt.
- Zur netzausfallsicheren Speicherung der Einstellung im PMX klicken Sie dieses Symbol an und bestätigen Sie die Sicherheitsabfrage.

Beispiel: Konfigurieren des PMX mit Wegaufnehmer

Im Beispiel ist Einschub 2 mit einer PX455 bestückt und am 3. Kanal ein Wegaufnehmer WI 10mm angeschlossen.


- Der PMX-Verstärkerkanal wird auf den Sensortyp Induktive Halbbrücke mit dem Messbereich 100 mV/V eingestellt.
- Die Skalierung (Charakteristik) wird auf 10 mm bei einer Sensor-Empfindlichkeit von 80 mV/V eingestellt.
- Als Filtertyp wird hier Bessel mit einer Grenzfrequenz von 20 Hz eingestellt.
- Die Daten sind nun im PMX geändert und werden durch das Diskettensymbol in der Statusleiste angezeigt.
- Zur netzausfallsicheren Speicherung der Einstellung im PMX klicken Sie dieses Symbol an und bestätigen Sie die Sicherheitsabfrage.

12.3 Einmess-Assistent

Zum einfachen Einmessen von nicht-kalibrierten Sensoren steht ab der Firmware-Version 2.04 ein Einmess-Assistent zur Verfügung. Dieser unterstützt Sie über eine einfache, menügeführte Bedienung beim Einmessen von bis zu 4 Sensoren. Dies ist hilfreich, wenn z. B. diese erst vor Ort in einer Maschine eingebaut werden und im Kraftnebenschluss betrieben werden. Als Referenzsensor können Sie einen Messkanal im PMX oder eine externe Referenz-Messkette nutzen.

1. Auswahl Einmesskanal und Referenzkanal

2. Einmessen der Messkette im entlasteten und belasteten Zustand

Tipp

Zur Verbesserung der Genauigkeit sollten Sie den Einmessvorgang mehrfach wiederholen.

 Nach den Einmessvorgängen werden die Kanal-Einstellunmgen durch Klicken auf Anwenden übernommen. Anklicken von Abbrechen stellt den Ausgangszustand wieder her.

12.4 Firmware aktualisieren (PMX-Webserver)

Für den Betrieb von PMX-Geräten in der aktuellen Version benötigen Sie ein Endgerät (z. B. PC oder Tablett mit Maus) mit einem aktuellen Webbrowser (Internet-Explorer Version > 9.0, Firefox oder Chrome) und einer Bildschirmauflösung von mindestens 1024 x 768.

Auf dem PC muss mindestens Windows XP installiert sein.

Eine neue Version des Webservers ist Bestandteil der PMX-Firmware und wird zusammen mit ihr bei einer Firmware-Aktualisierung installiert (siehe Kapitel 24, "Firmware-Aktualisierung (Update)", Seite 432).

Die Firmware-Aktualisierung führen Sie im PMX-Webbrowser mit dem Menü Einstellungen -> System -> Gerät -> Firmware aktualisieren durch.

Weitere Unterstützung finden Sie in der Online-Hilfe des Webbrowsers.

Tipp

Die aktuelle Firmware können Sie unter folgendem Link herunterladen: https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/

13 INTERNE BERECHNUNGSKANÄLE

Im PMX stehen insgesamt 32 interne Berechnungskanäle zur freien Verwendung zur Verfügung. Die über 30 zur Verfügung stehenden Berechnungen, die im DSP (Digitaler Signal-Prozessor) des PMX erfolgen, können Sie beliebig auf diese Kanäle verteilen und auch Berechnungen mehrfach sowie in weiteren Berechnungen nutzen. Berechnungskanäle werden mit der gleichen Geschwindigkeit berechnet wie die Messkanäle und können wie diese über Analogausgänge, Feldbus oder Ethernet (PC-Software/API) weiter verarbeitet werden.


Berechnungen werden zunächst nur intern durchgeführt. Verwenden Sie z. B. die Einschubkarte PX878, um das Ergebnis an externe Geräte als Analog- oder Digitalsignal auszugeben. Berechnungen können in anderen Berechnungen verwendet werden, wenn sie in der Liste oberhalb der Berechnung angeordnet sind, in der sie verwendet werden sollen. Einige der für Berechnungen hilfreichen Konstanten, z. B. ungültig, 0 (konstant 0), oder π (pi), stehen immer zur Verfügung. Legen Sie weitere Konstanten selbst an.

Wichtig

Achten Sie darauf, dass die CPU-Last, hervorgerufen durch die Berechnungskanäle, unter 100% liegt, da sonst einzelne Werte verloren gehen. Reduzieren Sie dazu ggf. die Ausgaberate der Berechnungskanäle.

Die CPU-Last der Berechnungskanäle wird in der Statuszeile des PMX-Web-Browsers und im Menü Einstellungen -> System -> Gerät -> System-Optionen angezeigt. Zusätzlich steht die Information im Systemstatus des PMX zur Verfügung und Sie können sie über Feldbus, Ethernet und Digitalausgang ausgeben.

Beim Verwenden des Objektverzeichnisses verändert sich durch Hinzufügen, Ändern oder Löschen von Berechnungskanälen die Objektliste dynamisch. Erstellen Sie dann die Header-Files neu und passen Sie die Programmierung über Feldbus- oder PC-Steuerung an.

13.1 Berechnungsrate

Für alle Bausteine gilt, wenn nicht anders angegeben:

Berechnungsrate	gleich der Aktualisierungsrate (Voreinstellung 19200/s)
Wertebereich der	Einfache Fließkomma-Auflösung nach IEEE 754
Fließkommawerte	Bereich ca. ±3,4*10 ³⁸

Falls eines der Quellsignale ungültig ist, wird auch das Ausgangssignal ungültig. Ist das Ergebnis außerhalb des Ausgabebereichs, wird NaN (not a number) angezeigt und $\pm 3.4*10^{38}$ (ungültig) ausgegeben. Dies wird sowohl im PMX-Browser als auch im Messwertstatus angezeigt.

13.2 Beschreibungen der Berechnungen

13.2.1 Skalierung

13.2.2 Zweipunktskalierung

Funktion	Lineare Skalierung eines Signals
	Ausgang = m * In + b
	mit m = $(y2 - y1) / (x2 - x1)$ und b = $y2 - m * x2$
Quelle	Eingang
Ausgang	Ergebniskanal
Parameter	Zwei Stützpunkte (x1 y1) und (x2 y2) mit x = Eingangswerte und y = Ausgangswerte
Voreinstellung	x1 = y1 = 0; x2 = y2 = 1 (entspricht m = 1 und b = 0)
Ausnahme- behandlung	Bei Bereichsüberschreitung, z.B. bei x1 = x2, wird NaN ausgegeben.

13.2.3 Kennlinientabelle (21 Stützpunkte)

Funktion	Nichtlineare Kennlinie linearisieren
Quelle	Eingang
Ausgang	Ergebniskanal
Parameter	Anzahl benutzter Stützpunkte (2 21), (x0 y0) (x20 y20)
Voreinstellung	
	x0 y0: -1000 -1000
	x1 y1: 1000 1000
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig.

Unterhalb des ersten x-Wertes wird der erste y-Wert ausgegeben, oberhalb des letzten x-Wertes der letzte y-Wert. Sie können auch Sprünge eingeben, d. h. für zwei gleiche x-Werte zwei verschiedene y-Werte. Unterhalb dieses x-Wertes wird dann der erste y-Wert, oberhalb der zweite y-Wert ausgegeben.

Die Funktion ist z. B. geeignet für die Begrenzung von Werten oder eine Betragsbildung.

13.2.4 Polynom 4. Ordnung

Das Eingangssignal wird über das angegebene Polynom umgerechnet. Sie können bis zu fünf Koeffizienten angeben. Um unterschiedliche Polynome für positive und negative Eingangswerte zu verwenden, geben Sie 2 bei *Anzahl der Koeffizientensätze* ein. Falls Sie zwei Koeffizientensätze verwenden, wird für negative Eingangswerte der Koeffizientensatz mit den b-Koeffizienten verwendet.

Funktion	Polynom 4. Ordnung
i uliktioli	
	Ergebniskanal = $a0 + a1*x + a2*x^2 + a3*x^3 + a4*x^4$ (wenn x >= 0 oder nur 1 Koeffizientensatz)
	Ergebniskanal = $b0 + b1*x + b2*x^2 + b3*x^3 + b4*x^4$ (wenn x < 0)
Quelle	Eingang
Ausgang	Ergebniskanal
Parameter	Anzahl der Koeffizientensätze
	Set A: a0, a1, a2, a3, a4
	Set B: b0, b1, b2, b3, b4 (nur bei 2 Koeffizientensätzen)
Voreinstellung	Eingang: 0
	Anzahl der Koeffizientensätze: 1
	a0 a4, b0 b4: 0
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig. Falls das Ausgangssignal außerhalb des Darstellungsbereiches liegt (±3.4*10 ³⁸), wird NaN ausgegeben und das Signal wird ungültig.

13.2.5 Tarieren

Funktion	Schnelles Nullsetzen oder Tarieren, gesteuert über digitalen Eingang.
Quellen	Eingang
	Tarier-Zielwert: Wert, der nach dem Nullstellen/Tarieren am Ausgang ausgegeben werden soll.
	Tarieren mit (pegelgesteuert): bei High-Pegel wird der Ausgang auf den Tarier-Zielwert gesetzt.
	Rücksetzen (pegelgesteuert): bei High-Pegel wird das Nullstellen/ Tarieren rückgängig gemacht. Reset übersteuert Tarieren-Trigger.
Ausgang	Eingang - Tarawert + Tarier-Zielwert
Parameter	
Voreinstellung	Eingang: 0
	Tarier-Zielwert: 0
	Tarieren mit: keine
	Rücksetzen: keine
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig. Bei ungültigem Quellsignal wird keine Tarierung durchge- führt.
	Der Tarier-Zielwert wird nicht auf Gültigkeit geprüft (er ist i.d.Regel eine Konstante).

Das schnelle Tarieren ist eine Alternative zum Nullstellen im Menü Verstärker:

	Nullstellen (Menü)	Tarieren (Berechnung)
Verfügbarkeit	Immer verfügbar in Verstär- ker-Einstellungen	Nur als berechneter Kanal
Offset	Bekannt und vom Benutzer	Unbekannt, nicht wählbar
(Differenz Eingang – Ausgang)	wählbar	
Wirkung	Wirkt direkt am Sensor auf Original-Messsignal	Original-Messsignal wird nicht beeinflusst
Ausführungszeit	Feldbus ca. 30 ms ¹⁾	ca. 0,2 ms ¹⁾ bei 19200/s
	digitaler Eingang ca. 12 ms ¹⁾	Aktualisierungsrate

¹⁾ Richtwerte bei Voreinstellungen

13.2.6 6x6 Matrix

Funktion	out1 = a11*in1 + a12*in2 + a13*in3 + a14*in4 + a15*in5 + a16*in6 out2 = a21*in1 + a22*in2 + a23*in3 + a24*in4 + a25*in5 + a26*in6 out3 = a31*in1 + a32*in2 + a33*in3 + a34*in4 + a35*in5 + a36*in6 out4 = a41*in1 + a42*in2 + a43*in3 + a44*in4 + a45*in5 + a46*in6 out5 = a51*in1 + a52*in2 + a53*in3 + a54*in4 + a55*in5 + a56*in6 out6 = a61*in1 + a62*in2 + a63*in3 + a64*in4 + a65*in5 + a66*in6	
Quellen	6 Eingänge	
Ausgänge	6 Ausgänge	
Parameter	a11, a12, a13, a14, a15, a16 a21, a22, a23, a24, a25, a26 a31, a32, a33, a34, a35, a36 a41, a42, a43, a44, a45, a46 a51, a52, a53, a54, a55, a56 a61, a62, a53, a64, a65, a66	
Voreinstellung	Koeffizienten als Matrix: 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0	
Ausnahme- behandlung	Falls eines der Quellsignale ungültig ist, werden auch alle Ausgangssignale ungültig.	

Sie können die Berechnung z. B. dafür verwenden, das Übersprechen eines Mehrkomponenten-Kraftaufnehmers im Ausgangssignal zu kompensieren. Geben Sie in die Tabelle des Dialogs nur die Koeffizienten (axx) ein. Verwenden Sie 0 für unbenutzte Koeffizienten. Falls Sie z. B. Eingang6 nicht benötigen, setzen Sie alle ax6 (a16 bis a66) auf 0

13.2.7 DMS-Spannungsanalyse

Die Funktion berechnet aus den Messwerten der Messgitter einer 0°/45°/90°-Rosette oder einer 0°/60°/120°-Rosette die Hauptnormalspannung 1 (σ 1), die Hauptnormalspannung 2 (σ 2), den Winkel (ϕ), die Vergleichsspannung nach von Mises (σ V) und die Schubspannung (τ max), die unter 45° zur Richtung der Hauptnormalspannung 1 liegt.

Kompensation der Temperatureffekte

Sie haben drei Möglichkeiten, die Temperatureffekte Ihres Werkstoffs zu kompensieren:

- Sie verwenden eine zweite (passive) Rosette, die mit der aktiven Rosette als Halbbrücke verschaltet ist und nur die Temperaturdehnung des Werkstoffs erfasst.
- 2. Sie verwenden ein einzelnes Messgitter (Temperaturkompensations-DMS), das in einem weiteren Kanal gemessen wird.
- 3. Sie messen die Temperatur an der Messstelle der Rosette mit einem Temperatursensor und berechnen mit den auf der DMS-Packung angegebenen Koeffizienten für den Temperaturgang die scheinbare Dehnung.

Erzeugen Sie dazu eine Polynomberechnung mit den auf der Packung angegebenen Polynomkoeffizienten und dem Temperaturwert als Eingangssignal, siehe auch *Abschnitt 13.2.4, Polynom 4. Ordnung, Seite 178.* Verwenden Sie dann diesen Kanal als Eingangssignal für die Scheindehnung.

Geben Sie **konstant 0** für den **Temperaturkompensations-DMS** oder die **Scheindehnung** ein, falls Sie die jeweilige Methode nicht verwenden.

Funktion	Spannungsanalyse im zweiachsigen Spannungszustand mit Dehnungsmessstreifen-Rosette mit drei Messgittern (0° / 45° / 90° oder 0° / 60° / 120°). Nullstellen Die Kanäle mit den Messgittern a, b und c müssen nicht auf Null gesetzt werden. Der Funktionsblock stellt einen Nullstell-Eingang bereit, der alle Ausgänge löscht. Das Ergebnis des Nullstellens wird zusammen mit den anderen Einstellungen gespeichert und nach einem Neustart des Geräts wiederhergestellt.
Quellen	Messgitter a (0°, Winkelreferenz) in μm/m Messgitter b (45° / 60°) in μm/m Messgitter c (90° / 120°) in μm/m Temperaturkompensations-DMS in μm/m Scheindehnung (aus dem Polynomkanal) in μm/m Reset durch (pegelgesteuert): setzt alle Ausgänge außer dem Winkel φ auf Null.
Ausgänge	σ 1: Hauptnormalspannung 1 (Einheit wie Einheit des E-Moduls) σ 2: Hauptnormalspannung 2 (Einheit wie Einheit des E-Moduls) ϕ : Winkel von σ 1 basierend auf der Achse des Messgitters a in Grad; Bereich 0 180° τ max: Maximale Scherspannung (Einheit wie Einheit des E-Moduls) σ V: von-Mises-Spannung (Einheit wie Einheit des E-Moduls)

Parameter	DMS-Typ: 0/45/90° oder 0/60/120°
	E-Modul (Elastizitätsmodul), die Einheit (z.B. N/mm²) bestimmt die Einheit der Ausgangssignale
	Querzahl (Poissonzahl)
Voreinstellung	Messgitter a, b, c und Temperaturkompensations-DMS: 0
	DMS-Typ: 0/45/90°
	E-Modul: 200000
	Querzahl: 0,3
Ausnahme- behandlung	Falls eines der Quellsignale ungültig ist, wird auch das Ausgangssignal ungültig.

Information

Die Messgitter der Rosette müssen als Halbbrücken angeschlossen werden, ein Anschluss als Viertelbrücke ist bei PMX nicht möglich. Falls Sie daher die aktive Rosette nicht mit einer zweiten Rosette zur Temperaturkompensation zu einer Halbbrücke verschalten können, müssen Sie die DMS-Messgitter der Rosette mit temperaturstabilen Festwiderständen (TKO) zu Halbbrücken ergänzen.

13.2.8 Auswertefunktionen

13.2.9 Filter (IIR, Hochpass oder Tiefpass)

Funktion	Filtert ein Signal
Quelle	Eingang
Ausgang	Ergebniskanal
Parameter	Typ: Tiefpass oder Hochpass
	Charakteristik: Bessel oder Butterworth
	Grenzfrequenz (-3 dB)
Voreinstellung	Typ: Tiefpass
	Charakteristik: Bessel
	Grenzfrequenz: aus (Filter aus)
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig. Falls das Ausgangssignal außerhalb des Darstellungsbereiches liegt (±3.4*10 ³⁸), wird NaN ausgegeben.

Filterfrequenz und Laufzeit (delay) der Tiefpassfilter

fc in Hz	Bessel Laufzeit in ms	Butterworth Laufzeit in ms
off	0	0
3000	0.13	0.19
2000	0.21	0.30
1000	0.43	0.61
500	0.86	1.23
200	2.00	3.10
100	4.15	6.17
50	8.45	12.5
20	21.4	30.7
10	39	47
5	74	91
2	174	216
1	340	430
0.5	680	840
0.2	1680	2090
0.1	3360	4200

Die Laufzeit der Hochpassfilter ist 0 ms.

Filter mit Bessel-Charakteristik (Voreinstellung) verursachen keine Signalverzerrung, haben aber einen relativ flachen Frequenzgang. Filter mit Butterworth-Charakteristik sind steiler, verursachen aber ein Überschwingen (ca. 10%), das besonders bei schnellen Signaländerungen auffällt. Filter mit Bessel-Charakteristik eignen sich bevorzugt für pulsförmige Signale, Filter mit Butterworth-Charakteristik für Signale, bei denen die Bandbreite eingeschränkt werden soll.

13.2.10 Winkelsynchrones Filter (CASMA)

Funktion	Die Berechnung unterdrückt periodische Störungen, die bei der Messung von drehenden Teilen auftreten können. Das Filter arbeitet synchron zum Drehwinkel, nicht zeitbezogen oder mit einer festen Grenzfrequenz. Dadurch hängt die Qualität der Störunterdrückung nicht von der Drehzahl ab (CASMA = Crank Angle Synchronous Moving Average). Die Berechnung ermittelt nach dem als Auflösung eingestellten Winkel einen neuen (gleitenden) Mittelwert über die in der Fensterbreite erfasste Anzahl von Werten. Sobald die Drehbewegung aufhört, werden auch keine neuen Werte berechnet. Um die Berechnung durchführen zu können, benötigen Sie neben dem zu filternden Signal, z. B. einem Drehmoment, noch das Signal eines Drehwinkelsensors. Periodische Störung Periodische Störung Periodische Störung Fensterbreite = 1 Umdrehung = 360° (zum Beispiel)
Quellen	Filtereingang
	Winkel (0° 360°)
Ausgang	Gleitender Mittelwert des Filtereingangs
Parameter	Fensterbreite: 30° 720°
	Minimale Drehzahl in 1/min
	Auflösung: 1° 8°
	Das Verhältnis Fensterbreite/Auflösung darf nicht größer als 180 sein.
Voreinstellung	Fensterbreite: 180°
	Minimale Drehzahl: 0
	Auflösung: 1°
Ausnahme- behandlung	

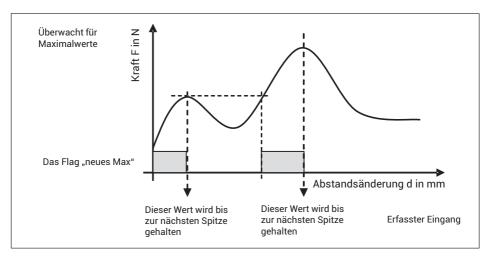
Die Auflösung legt fest, wie häufig (alle wie viel Grad) ein neuer Mittelwert berechnet wird. Beachten Sie, dass die maximal zulässige Drehzahl von diesem Wert abhängt, da die Berechnungsgeschwindigkeit durch die Gesamtaktualisierungsrate (siehe Menü **System-Optionen**) festgelegt ist. Als theoretischer Wert ergibt sich:

Maximale Drehzahl = Auflösung * Gesamtaktualisierungsrate / 6 (siehe auch die folgende Tabelle).

Sie sollten jedoch in der Praxis Werte verwenden, die nur 10 bis 20% dieser theoretisch maximal möglichen Drehzahl betragen.

Auflösung	Theoretische max. Drehzahl bei 19200 Hz Gesamtaktualisierungsrate	Theoretische max. Drehzahl bei 38400 Hz Gesamtaktualisierungsrate
1°	3200 U/min	6400 U/min
2°	6400 U/min	12800 U/min
4°	12800 U/min	25600 U/min
6°	19200 U/min	38400 U/min
8°	25600 U/min	51200 U/min

Die folgenden Vielfachen der Drehzahl werden abhängig von der Fensterbreite unterdrückt:


Fensterbreite	Vielfache
90°	4, 8, 12,
120°	3, 6, 9,
180°	2, 4, 6,
360°	1, 2, 3,
720°	0,5, 1,0, 1,5,

13.2.11 Spitzenwerte (und Hüllkurve)

	Spitze-Wert eines Signals. Zusätzlich können Sie den Wert eines anderen Kanals (Eingang 2) bei Erreichen eines Extremwertes ermitteln lassen. Falls Sie eine Entladungsrate angeben, erhalten Sie eine Hüllkurvenfunktion. Der Maximal- oder der Spitze-Spitze-Wert nimmt mit der Entladerate ab, der Minimalwert nimmt mit der Entladerate zu. Zusätzlich wird ein neuer Spitzenwert durch ein Flag signalisiert. Das Flag ist nur in dem Zyklus auf High, in dem ein Spitzenwert erkannt wurde. Wenn das Eingangssignal ansteigt, ist das Flag dauernd auf High.
	Reset durch (virtuellen) digitalen Eingang, Flag (pegelgesteuert) oder Feldbus (ereignisgesteuert)
	Halten über digitalen Eingang (pegelgesteuert)
	Dieser Funktionsblock liefert nach seiner Erstellung oder nach dem Umschalten des Parametersatzes möglicherweise falsche Werte. Setzen Sie in diesen Fällen den Extremwert zunächst zurück.
	Kleine Entladeraten können zu Problemen aufgrund der verwendeten numerischen Genauigkeit führen. Bitte vergleichen Sie die Entladerate mit den erwarteten Spitzenwerten.
	Entladungsrate 1 % 5 % des Spitzenwertes: Prüfen, ob der Wert erwartungsgemäß abnimmt.
	Entladungsrate < 1 % des Spitzenwertes: Der Wert nimmt möglicherweise nicht erwartungsgemäß ab.
Quellen	Eingang 1
	Eingang 2
	Halten mit
	Reset durch
Ausgänge	Extremwert Eingang 1
	Eingang 2 bei Extremwert 1
	Neuer Extremwert (Flag)
Parameter	Funktion: Maximum, Minimum, Spitze-Spitze
	Invertiere Haltekanal
	Entladungsrate (1/Sekunde)

Voreinstellung	Eingänge 1, 2: 0
	Halten mit: keine
	Reset durch: keine
	Funktion: Maximum
	Invertiere Haltekanal: nein
	Entladungsrate: 0
Ausnahme- behandlung	Falls eines der Quellsignale ungültig ist, wird auch das Ausgangssig- nal ungültig.

Beispiel: Erfassen der Abstandsänderung, wenn $F = F_{max}$

13.2.12 Toleranzfenster

Funktion	Das Toleranzfenster vereint mehrere Funktionen: Minimum-, Maximum-, Spitze-Spitze- und Mittelwert-Erfassung sowie Überwachung von Pegelunter- und Pegelüberschreitung über einen wählbaren Zeitraum. Zusätzlich können Sie den Wert eines anderen Kanals bei Erreichen eines Extremwertes ermitteln lassen. Der Vorgang wird von flankensensitiven Digitalsignalen gestartet und gestoppt. Ein zweites Eingangssignal wird erfasst, wenn eine neue Spitze (Min.
	oder Max.) erkannt wurde. Nach dem Start werden zunächst alle Werte und die Flags zurückgesetzt. Dann wird das Signal von Eingang 1 auf Minimum und Maximum geprüft und der Spitze-Spitze-Wert sowie der Mittelwert berechnet. Der Mittelwert wird dabei über maximal 100000 Zyklen (Werte) berechnet (ca. 5,2 s bei 19,2 kHz Aktualisierungsrate). Die Zeitdauer zwischen jeweils einem Start und dem folgenden Stopp wird als Dauer 1 in Millisekunden gemessen. Zusätzlich wird das Signal 1 auf Über- bzw. Unterschreiten der Schwellwerte überwacht. Falls die jeweilige Schwelle über- bzw. unterschritten wird, wird das angegebene Flag gesetzt. Falls Sie bei Eingang 2 einen Kanal angeben, wird dessen Wert bei Auftreten eines Minimums bzw. Maximums des bei Eingang 1 angegebenen Kanals bis zum nächsten Auftreten festgehalten (Eingang 2 bei Min. 1 bzw. Eingang 2 bei Max. 1).
Quellen	Eingang 1 Eingang 2 Start: Startet die Messung
	Stopp: Beendet die Messung
	Obere Schwelle: Nachdem x diesen Wert überschritten hat, wird der Ausgang "Limit Hi" bis zum nächsten Start aktiv.
	Untere Schwelle: Nachdem x diesen Wert unterschritten hat, wird der Ausgang "Limit Lo" bis zum nächsten Start aktiv.

Ausgänge	Max Eingang 1 (seit Start)
	Min Eingang 2 (seit Start)
	Bei Max erfasster Wert des zweiten Eingangssignals
	Bei Min erfasster Wert des zweiten Eingangssignals
	Spitze-Spitze 1 (Eingang 1 seit Start)
	Mittelwert (Eingang 1 seit Start)
	Dauer 1: die Zeit in ms seit Start. Nach dem Prozess die Zeit von Start bis Stopp.
	Flag Limit Hi zeigt die Überschreitung von "Obere Schwelle" an
	Flag Limit Lo zeigt die Überschreitung von "Untere Schwelle" an
Parameter	Start: bei steigender/fallender Flanke
	Stopp: bei steigender/fallender Flanke
Voreinstellung	Eingang 1, 2: 0
	Eingang 2
	Start, Stopp: keine
	Stopp: beendet die Messung
	Obere Schwelle, untere Schwelle: 0
	Start, Stopp: bei steigender Flanke
Ausnahme- behandlung	Falls das Signal an Eingang 1 ungültig ist, werden der Spitzenwert- und der Mittelwert-Ausgang nicht aktualisiert und ungültig, bis die Stopp-Bedingung erfüllt ist. Beim nächsten Startsignal werden die Werte wieder gültig. Der Zeitausgang (<i>Dauer</i>) wird durch ein ungültiges Eingangssignal nicht beeinträchtigt.
	Das Signal an Eingang 2 wird nicht auf Gültigkeit geprüft.
	Überschreitet die Zeit 100000 Aktualisierungen, wird der Mittelwert nicht mehr aktualisiert und ungültig.

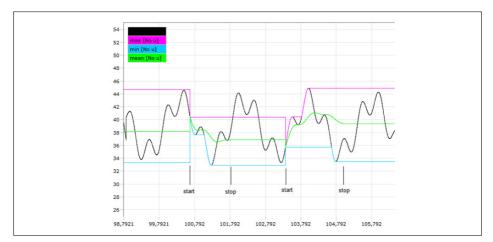


Abb. 13.1 Beispiel für Max., Min. und Mittelwert. Beim Start zurücksetzen, von Stopp bis Start halten.

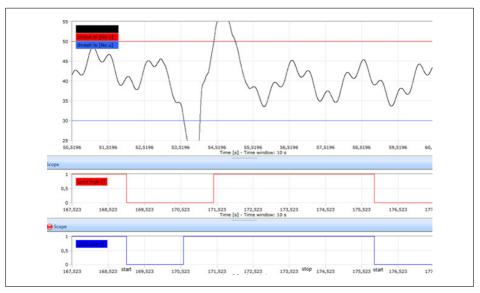


Abb. 13.2 Beispiel für Schwellenwerte und die Grenzwert-Flags. Beim Startereignis zurücksetzen.

13.2.13 Halten (analog getriggert)

Funktion Hält den aktuellen Wert des Eingangssignals fest (Momentanwert). Die Steuerung erfolgt über den Pegel eines analogen Signals bzw. einer Berechnung. Haltebedingung: Wenn sich der Eingang innerhalb oder außerhalb des Intervalls obere/untere Grenze befindet. Wenn die Haltebedingung erfüllt ist, wird der Eingang auf den Ausgang ausgegeben. Wenn die Haltebedingung nicht erfüllt ist, wird der Ausgang auf dem letzten gehaltenen Wert gehalten und ggf als ungültig gekennzeichnet. Das Halten des Momentanwertes kann um bis zu 60000 ms verzögert erfolgen. Über Ungültig außerhalb: Ja (auf 2 klicken) können Sie zusätzlich den Ausgang auf ungültig setzen, solange noch kein Momentanwert erfasst wurde. Quellen Eingang Steuerungseingang Startwert durch: digitaler Eingang, setzt den Ausgang auf den Startwert wert Ausgang Gehaltener Wert Obere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein Verzögerung: 0 60000 ms		
Intervalls obere/untere Grenze befindet. Wenn die Haltebedingung erfüllt ist, wird der Eingang auf den Ausgang ausgegeben. Wenn die Haltebedingung nicht erfüllt ist, wird der Ausgang auf dem letzten gehaltenen Wert gehalten und ggf als ungültig gekennzeichnet. Das Halten des Momentanwertes kann um bis zu 60000 ms verzögert erfolgen. Über Ungültig außerhalb: Ja (auf 2 klicken) können Sie zusätzlich den Ausgang auf ungültig setzen, solange noch kein Momentanwert erfasst wurde. Quellen Eingang Steuerungseingang Startwert durch: digitaler Eingang, setzt den Ausgang auf den Startwert wert Ausgang Gehaltener Wert Parameter Obere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein	Funktion	Die Steuerung erfolgt über den Pegel eines analogen Signals bzw.
gang ausgegeben. Wenn die Haltebedingung nicht erfüllt ist, wird der Ausgang auf dem letzten gehaltenen Wert gehalten und ggf als ungültig gekennzeichnet. Das Halten des Momentanwertes kann um bis zu 60000 ms verzögert erfolgen. Über Ungültig außerhalb: Ja (auf 2 klicken) können Sie zusätzlich den Ausgang auf ungültig setzen, solange noch kein Momentanwert erfasst wurde. Quellen Eingang Steuerungseingang Startwert durch: digitaler Eingang, setzt den Ausgang auf den Startwert wert Ausgang Gehaltener Wert Parameter Obere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein		
zögert erfolgen. Über Ungültig außerhalb: Ja (auf 2 klicken) können Sie zusätzlich den Ausgang auf ungültig setzen, solange noch kein Momentanwert erfasst wurde. Quellen Eingang Steuerungseingang Startwert durch: digitaler Eingang, setzt den Ausgang auf den Startwert wert Ausgang Gehaltener Wert Parameter Obere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein		gang ausgegeben. Wenn die Haltebedingung nicht erfüllt ist, wird der Ausgang auf dem letzten gehaltenen Wert gehalten und ggf als
Ausgang auf ungültig setzen, solange noch kein Momentanwert erfasst wurde. Quellen Eingang Steuerungseingang Startwert durch: digitaler Eingang, setzt den Ausgang auf den Startwert Wert Ausgang Gehaltener Wert Parameter Obere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein		
Steuerungseingang Startwert durch: digitaler Eingang, setzt den Ausgang auf den Startwert Ausgang Gehaltener Wert Parameter Obere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein		Ausgang auf ungültig setzen, solange noch kein Momentanwert
Startwert durch: digitaler Eingang, setzt den Ausgang auf den Startwert Ausgang Gehaltener Wert Dere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein	Quellen	Eingang
wert Ausgang Gehaltener Wert Parameter Obere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein		Steuerungseingang
Parameter Obere Grenze (des Haltebereichs) Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein		
Untere Grenze (des Haltebereichs) Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein	Ausgang	Gehaltener Wert
Außerhalb halten: ja/nein Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch. Ungültig außerhalb: ja/nein	Parameter	Obere Grenze (des Haltebereichs)
Nur bei Eintritt (ins Intervall halten): ja/nein Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch . Ungültig außerhalb: ja/nein		Untere Grenze (des Haltebereichs)
Startwert: wird ausgegeben bei positiver Flanke an Eingang Startwert durch . Ungültig außerhalb: ja/nein		Außerhalb halten: ja/nein
durch. Ungültig außerhalb: ja/nein		Nur bei Eintritt (ins Intervall halten): ja/nein
Verzögerung: 0 60000 ms		Ungültig außerhalb: ja/nein
		Verzögerung: 0 60000 ms

Voreinstellung	Obere Grenze, untere Grenze: 0
	Außerhalb halten: nein
	Nur bei Eintritt: nein
	Startwert: 0
	Ungültig außerhalb: nein
	Verzögerung: 0
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig. Die Kennzeichnung erfolgt allerdings erst beim Eintreten des angegebenen Halteereignisses. Falls der Steuerungseingang ungültig ist, wird kein Momentanwert erfasst, der Ausgang bleibt auf dem letzten Wert.

13.2.14 Halten (digital getriggert)

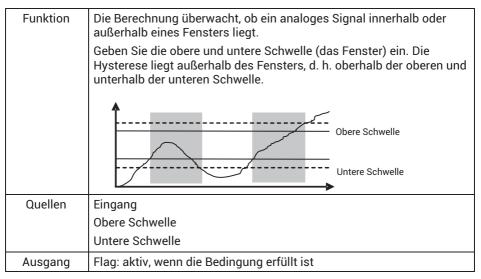
Funktion	Hält den aktuellen Wert des Eingangssignals fest (Momentanwert). Die Steuerung erfolgt über die Signalflanke eines digitalen Eingangs (flankengesteuert).
Quellen	Eingang
	Halten mit (flankengesteuert)
	Reset durch (nur wirksam, wenn kein Retrigger verwendet wird)
Ausgang	Gehaltener Wert
Parameter	Eingang
	Halten mit
	Reset durch
	Invertiere Haltekanal
	Retriggerfähig: nachtriggerbar, d. h., der Ausgang wird mit jeder Flanke des Eingangs Halten mit aktualisiert
	Verzögerung: 0 60000 ms (= 1 min); Auflösung 0,1 ms Der Wert wird erst gehalten, wenn der Eingang Halten mit für diese Zeit ununterbrochen aktiv war.
Voreinstellung	Invertiere Haltekanal: nein
	Retriggerfähig: ja
	Verzögerung: 0 ms
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig.
	Die Haltefunktion wird trotzdem durchgeführt und ausgegeben.

13.2.15 Mittelwert (arithmetisch, RMS)

r	
Funktion	Die Berechnung ermittelt den arithmetischen oder quadratischen (RMS) Mittelwert eines Signals. Sie haben drei Möglichkeiten festzulegen, über welche Dauer die Berechnung erfolgen soll:
	- Über eine bestimmte Anzahl von Werten.
	- Wenn ein bestimmter Wert im Kanal Trigger über- oder unterschritten wird. Sie können festlegen, dass die Über- bzw. Unterschreitung mehrfach stattfinden muss (Anzahl Trigger).
	- Wenn in einem Kanal eine steigende oder fallende Flanke auftritt. Sie können festlegen, dass die Flanken mehrfach auftreten müssen.
	Je nachdem, welche Methode Sie verwenden möchten, müssen Sie unterschiedliche Quellen angeben.
	Beachten Sie, dass nach der Initialisierung des Gerätes oder einem Neustart der Berechnung der Ausgang erst nach dem zweiten Trigger bzw. Messwert einen sinnvollen Wert enthält.
	Es können maximal 100000 Werte verrechnet werden.
Quellen	Eingang
	Trigger (analoger Kanal): Eingang, der mit dem Schwellen-Eingang verglichen wird. Nur bei den Trigger-Ereignissen Schwellwert relevant.
	Trigger (digitaler Kanal): Eingang für den Start der Berechnung. Nut bei den Trigger-Ereignissen <i>Flanken</i> relevant.
	Schwelle: Nur bei den Trigger-Ereignissen Schwellwert relevant.
Ausgänge	Mittelwert: entweder der arithmetische oder der quadratische Mittelwert.
	Anzahl: Anzahl der Messwerte, über die gemittelt wurde.
Parameter	Trigger: Anzahl Messwerte, über/unter Schwellwert, steigende/fallende Flanke
	Anzahl Messwerte: Anzahl von Messwerten, über die gemittelt wird. Nur bei Trigger-Ereignis Anzahl Messwerte relevant.
	Anzahl Trigger: Der Mittelwert wird nach dieser Anzahl an Trigger-Ereignissen berechnet und aktualisiert. Nur bei den Trigger-Ereignissen Schwellwert und Flanke relevant.
	Mittelwert: arithmetisch oder quadratisch (RMS)

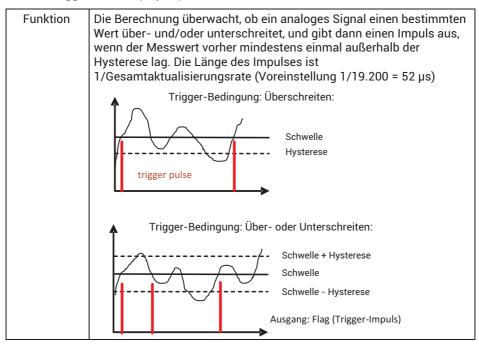
Voreinstellung	Eingang: 0
	Trigger: 0 bzw. keine
	Schwelle: 0
	Trigger: Über Schwellwert
	Anzahl Trigger: 1
	Mittelwert: arithmetischer Mittelwert
	Anzahl Messwerte: 2
Ausnahme- behandlung	Es können maximal 100000 Werte verrechnet werden. Falls mehr Werte anfallen, wird das Ausgangssignal ungültig, der Mittelwert für die ersten 100000 Werte wird jedoch ausgegeben. Beim nächsten Triggersignal beginnt dann die Berechnung von vorne (Neustart der Berechnung). Die Eingänge werden nicht auf ungültige Signale überprüft.

13.2.16 Gleitender Mittelwert


Funktion	Die Berechnung ermittelt den Mittelwert eines Signals über eine bestimmte Anzahl von Werten. Sie können den Mittelwert über maximal 385 Werte berechnen lassen. Die Einschwingzeit ergibt sich aus der Anzahl der Werte dividiert durch die Aktualisierungsrate für Berechnungen (Standard 1s/19200). Die Berechnung entspricht einem FIR-Filter.
Quelle	Eingang
Ausgang	Gleitender Mittelwert
Parameter	Anzahl Messwerte (Filterbreite): 1 385
Voreinstellung	Eingang: 0
	Anzahl Messwerte: 385
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird der letzte gültige Wert angezeigt und das Ausgangssignal wird ungültig. Die Berechnung wird in dieser Zeit angehalten.
	Sobald das Quellsignal wieder gültig wird, startet die Berechnung erneut. Die angegebene Anzahl von Werten muss jedoch erst im Puffer vorliegen (Einschwingzeit), bevor die Werte richtig sind.

Die Berechnung eignet sich gut, um z. B. 50 oder 60 Hz-Störungen und deren Oberwellen zu unterdrücken. Bei einer Aktualisierungsrate von 19200 Hz benötigen Sie 384 Werte, um 50 Hz und die Oberwellen 100 Hz, 150 Hz, 200 Hz etc. zu unterdrücken (19200/50 = 384). Verwenden Sie 320 Werte für 60 Hz und die zugehörigen Oberwellen (19200/60 = 320).

Die Berechnung benötigt relativ viel internen Speicher. Daher lassen sich meist nur sechs oder sieben Berechnungen dieses Typs durchführen. Falls nicht genügend Speicher zur Verfügung steht, wird die Fehlermeldung "Zu viele Funktionsblöcke" ausgegeben.



13.2.17 Trigger (Bereich)

Parameter	Hysterese: wirksam, wenn der Eingang das Fenster verlässt.
	Verzögerung: das Messsignal muss mindestens so lange wie hier angegeben die Triggerbedingung erfüllen, bevor ein Schaltvorgang stattfindet. Die Zeit gilt nur für das Überschreiten der Schwellen, nicht für die Hysterese.
	Aktiv: high oder low. Legt den Pegel des Ausgangs fest, wenn der Eingangswert innerhalb des Fensters liegt.
Voreinstellung	Eingang: 0
	Obere Schwelle: 1
	Untere Schwelle: 0
	Hysterese: 0
	Verzögerung in ms: 0
	Aktiv: high
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird der Wert für <i>nicht</i> Aktiv ausgegeben. Die Werte für die Schwellen und die Hysterese werden nicht überprüft.

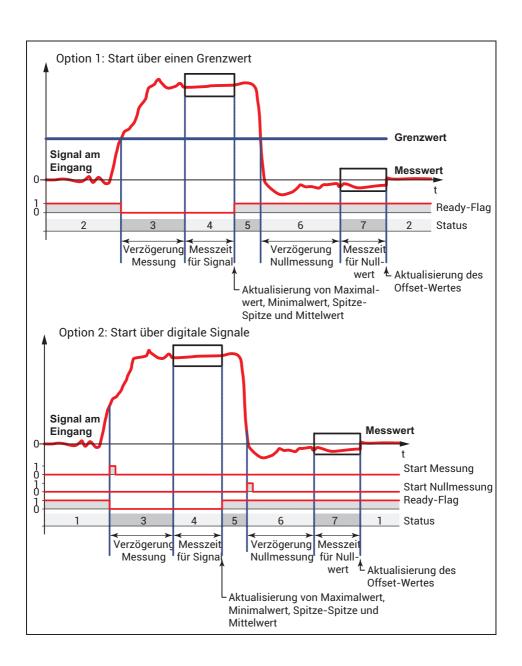
13.2.18 Triggerfunktion (Impuls)

Quellen	Eingang
Quellell	
	Schwelle
Ausgang	Flag
Parameter	Hysterese: wirksam, wenn der Eingang die Schwellen verlässt.
	Bedingung: bei Überschreiten oder Unterschreiten des Schwellenwertes oder bei beidem.
	Aktiv: high oder low, wenn die Bedingung erfüllt ist.
Voreinstellung	Eingang: 0
	Schwelle: 0
	Hysterese: 0
	Bedingung: Unterschreiten
	Aktiv: high
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird der Wert für <i>nicht</i> Aktiv ausgegeben. Wird das Quellsignal wieder gültig, so wird die Hysterese erst nach dem ersten Triggerimpuls wieder berücksichtigt. Die Werte für Schwelle und Hysterese werden nicht überprüft.

13.2.19 Kontrollwaage (Checkweigher)

Funktion

Bei einer Kontrollwaage (Checkweigher) erfolgt die Verwiegung während das Wägegut bewegt wird, z. B. über ein Förderband, Ziel dieser dynamischen Verwiegung ist eine hohe Durchsatzrate (Verwiegungen pro Minute) ohne Verlust an Genauigkeit (kleine Standardabweichung). Diese Berechnung filtert aus einem stark schwankenden bzw. verrauschten Signal ein gut verwertbares Nutzsignal, indem ein bestimmter Abschnitt im Signalverlauf verwendet wird und über diesen eine Mittelwertbildung erfolgt. Damit können Sie die Auswirkung überlagerter Störungen reduzieren. Zusätzlich können Sie einen Bereich definieren, in dem das Signal gemittelt und als Nullwert für weitere Messungen verwendet wird. Sie haben je zwei Möglichkeiten, die Messung und das Nullstellen zu starten:


- Über einen Grenzwert.
- Über ein digitales Signal.

Sie können die Methoden auch mischen, also Start der Messung von Mittelwert, Min/Max etc. über einen Grenzwert und Start der Nullmessung über ein digitales Signal.

Setzen Sie z. B. Freigeben durch auf 1 (Konstantes Signal) und Start bei auf High-Pegel, falls Sie den Start bzw. Stopp der Berechnung nicht über ein digitales Signal kontrollieren möchten. Die Berechnung wird dann immer durchgeführt, wenn die Bedingungen (Grenzwert oder Start Messung/Nullmessung mit) erfüllt sind.

Maximal-, Minimal-, Spitze-Spitze- und Mittelwert sind die Werte, die innerhalb der Messzeit über das Signal am Eingang ermittelt werden. Der Offset ist der Mittelwert über die Messzeit für Nullwert. Der Messwert wird während der gesamten Zeit laufend aktualisiert (aktueller Messwert) und entspricht dem Eingangssignal minus dem Offset.

Nach einem Neustart (Menü Gerät) wird zuerst eine Nullmessung mit der Dauer von Messzeit für Nullwert durchgeführt.

	Option 1: Der angegebene Grenzwert wird im Beispiel für beide Startbedingungen verwendet. Verwenden Sie ein konstantes Signal für den Grenzwert. Setzen Sie außerdem die Bedingungen Start Messung mit und Start Nullmessung mit auf 0 (konstantes Signal). Option 2: Geben Sie ein digitales Signal (Digitaleingang, Grenzwertschalter oder Flag) für die Bedingungen Start Messung mit und Start Nullmessung mit an. Sobald hier ein Kanal eingetragen ist, wird ein evtl. angegebener Grenzwert für die jeweilige Bedingung ignoriert. Die Eingänge werden über eine Flanke von Low nach High getriggert, ein konstanter Wert deaktiviert den betreffenden Eingang.
Quellen	Eingang
	Grenzwert: muss bei Triggerung durch Flags nicht gesetzt werden.
	Freigeben durch: Umschalten dieses Flags setzt alles zurück.
	Start Messung mit: sobald ein digitales Signal gesetzt ist, wird der Grenzwert nicht mehr berücksichtigt.
	Start Nullmessung mit: die Nullmesssung startet nach der eingestellten Verzögerungszeit.
Ausgänge	Messwert: wird ständig aktualisiert.
	Mittelwert: aus der Signal-Messzeit; wird aktualisiert, wenn das Ready-Flag aktiv wird.
	Max: Maximalwert aus der Signal-Messzeit; wird aktualisiert, wenn das Ready-Flag aktiv wird.
	Min: Minimalwert aus der Signal-Messzeit; wird aktualisiert, wenn das Ready-Flag aktiv wird.
	Spitze-Spitze: Spitze-Spitze-Wert aus der Signal-Messzeit; wird aktualisiert, wenn das Ready-Flag aktiv wird.
	Offset: der Mittelwert des Eingangs während der Nullmessung. Er wird am Ende der Nullmessung aktualisiert.
	Status: zeigt an, in welchem Abschnitt sich die Messung befindet (siehe Grafiken oben und Tabelle unten).
	Ready-Flag: zeigt das Ende der Signal-Messzeit an.

Parameter	Verzögerung Messung: Verzögerung für den Start der Messung, 0
Farametel	30000 ms.
	Messzeit für Signal: Breite des Messfensters 0 10000 ms. Falls Sie hier 0 eingeben, wird die Messung deaktiviert, die Nullmessung arbeitet aber weiterhin.
	Verzögerung Nullmessung: Zeit vom Abfall unter den Schwellenwert bzw. ab dem Flag zum Start der Nullmessung bis zum Start der Messung, 0 30000 ms.
	Messzeit für Nullwert: Zeitdauer der Nullmessung, 0 10000 ms. Falls Sie hier 0 eingeben, wird die Nullmessung deaktiviert, die Messung arbeitet aber weiterhin.
	Start bei: High- oder Low-Pegel.
Voreinstel-	Eingang = 0
lung	Grenzwert = 0
	Freigeben durch: 1
	Start Messung mit: 0
	Start Nullmessung mit: 0
	Verzögerung Messung: 1 ms
	Messzeit für Signal: 1 ms
	Verzögerung Nullmessung: 1 ms
	Messzeit für Nullwert: 1 ms
	Start bei: High-Pegel
Status = 1, 2	Warten auf Start der Messung oder Grenzwertüberschreitung.
Status = 3	Warten auf das Ende der Verzögerung der Messung.
Status = 4	Status während der Messzeit. Nach dem Ende der Messung werden Maximal-, Minimal-, Spitze-Spitze- und Mittelwert aktualisiert.
Status = 5	Warten auf Start der Nullmessung oder der Grenzwertunterschreitung.
Status = 6	Warten auf Ende der Verzögerung der Nullmessung.
Status = 7	Status während der Nullmessung. Nach dem Ende der Nullmessung wird der Offset aktualisiert.

Ausnahme- behandlung	Wenn der Eingangswert ungültig ist, wird kein Vorgang ausgeführt und der Messwert am Ausgang wird ungültig. Alle anderen Ausgänge behalten ihren jeweiligen Wert und Status.
	Diese Ausnahmen kommen nur im Modus mit Grenzwert-Trigger vor:
	- Wenn der Nettowert vor dem Beginn der Messung unter den Grenz- wert fällt, wartet die Ausführung, bis der Grenzwert wieder über- schritten wird.
	- Wenn der Nettowert innerhalb des Messfensters unter den Grenz- wert fällt, wird die Messung abgebrochen. Der nächste Schritt ist die Verzögerung der Nullmessung.
	- Wenn der Messwert den Grenzwert vor dem Beginn der Nullver- zögerung überschreitet, werden diese und die Nullmessung über- sprungen.
	- Wenn der Messwert den Grenzwert innerhalb der Nullmessung überschreitet, wird die Nullmessung abgebrochen und der Nullwert nicht geändert.

13.2.20 Mathematische Funktionen

13.2.21 Addierer / Subtrahierer

Funktion	Addiert vier Summanden, die mit je einem Faktor gewichtet sind Ausgang = Faktor1 * Eingang1 + Faktor2 * Eingang2 + Faktor3 * Eingang3 + Faktor4 * Eingang4
Quellen	Summand 1 4
Ausgang	Summe
Parameter	Faktor 1 4
Voreinstellung	Summand 1 4: 0 Faktor 1 4: 0
	Faktor 1 4. 0
Ausnahme- behandlung	Falls eines der Quellsignale ungültig ist, wird auch das Ausgangssig- nal ungültig. Die Berechnung wird trotzdem ausgeführt und ausgege- ben.
	Bei Bereichsüberschreitung wird NaN (±3.4*10 ³⁸) ausgegeben.

13.2.22 Multiplizierer

Funktion	Multipliziert vier Signale miteinander
Quellen	Eingang 1 4

Ausgang	Produkt
Parameter	
Voreinstellung	Eingang 1 4: 1
Ausnahme- behandlung	Falls eines der Quellsignale ungültig ist, wird auch das Ausgangssig- nal ungültig. Die Berechnung wird trotzdem ausgeführt und ausgege- ben.
	Bei Bereichsüberschreitung wird NaN (±3.4*10 ³⁸) ausgegeben.

13.2.23 Dividierer

Funktion	Quotient = Dividend / Divisor
Quellen	Dividend
	Divisor
Ausgang	Quotient
Parameter	_
Voreinstellung	Dividend: 1
	Divisor: 1
Ausnahme- behandlung	Falls eines der Quellsignale ungültig ist, wird auch das Ausgangssig- nal ungültig. Die Berechnung wird trotzdem ausgeführt und ausgege- ben.
	Bei Bereichsüberschreitung wird NaN (±3.4*10 ³⁸) ausgegeben.

13.2.24 Zähler

Funktion	Zählt die Übergänge eines digitalen Signals. Maximaler Zählerstand 2 ³² -1.
	Der Zähler-Modus ist entweder positive Flanke, negative Flanke oder beide Flanken. Ein digitaler Eingang aktiviert oder deaktiviert den Zählvorgang.
	Wenn der Zähler einen definierten Wert überschreitet, kann ein Flag gesetzt werden. Der Zähler kann nach Ablauf eines definierten Zeitraums ohne zählbare Übergänge gelöscht werden.
Quellen	Eingang: das zu zählende digitale Signal
	Gate: ein digitales Signal, das den Zähler aktiviert
	Reset durch: Ein digitales Signal, das den Zähler löscht (Pegel-gesteuert)

Ausgänge	Ausgang: der aktuelle Zählerwert
	Flag: wird gesetzt, wenn Zählerwert ≥ Grenzwert für Flag
Parameter	Modus: steigende oder fallende Flanke, beide Flanken
	Timeout nach: setzt den Zähler zurück, wenn keine zählbare Flanke in diesem Zeitraum erkannt wurde. 0 ms bedeutet, der Timeout ist deaktiviert.
	Grenzwert für Flag: gibt den Zählerwert an, bei dem das Flag gesetzt werden soll
Voreinstellung	Eingang: 0
	Gate: 1
	Reset durch: 0
	Modus: steigende Flanke
	Timeout nach: 0 ms (kein Timeout)
	Grenzwert für Flag: 1
Ausnahme- behandlung	_

13.2.25 Integrierer

Funktion	Integriert ein Signal über die Integrationszeit. Sie können die Integration über ein digitales Signal oder ein Flag zurücksetzen und Sie können einen Startwert vorgeben, der nach dem Rücksetzen verwendet wird. Die Auflösung beträgt 1/Aktualisierungsrate.
	Damit das Signal nicht unendlich groß oder klein wird, können Sie über Ymax und Ymin den Wertebereich für das Ergebnis einschränken. Die Integration stoppt dann bei Erreichen eines dieser Werte.
Quellen	Eingang
	Rücksetzen: setzt den Ausgangswert auf den Wert am Eingang (Init-Wert) zurück
	Startwert: Anfangswert der Integration
Ausgang	Ergebniskanal
Parameter	Integrationszeit: Zeitdauer für die Integration
	Ymax, Ymin: schränkt den Wertebereich des Ausgangs ein. Wenn der Integrator begrenzt ist, kann es zu keinem Wind-Up kommen.

Voreinstellung	Eingang: 0
	Rücksetzen: 0
	Startwert: 0
	Integrationszeit: 1 s
	Ymax: 10 ⁶
	Ymin: -10 ⁶
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird der letzte gültige Wert angezeigt und das Ausgangssignal wird ungültig. Die Berechnung wird in dieser Zeit angehalten.

13.2.26 Differenzierer

Funktion	Berechnet die Ableitung eines Signals über Δt = 4/Aktualisierungsrate.
	Damit das Signal nicht unendlich groß oder klein wird, können Sie über Ymax und Ymin den Wertebereich für das Ergebnis einschränken. Wir empfehlen, die Bandbreite des Eingangssignals zusätzlich über ein Tiefpassfilter zu begrenzen.
Quelle	Eingang
Ausgang	Ergebniskanal
Parameter	Ymax, Ymin: schränkt den Wertebereich des Ausgangs ein
Voreinstellung	Eingang: 0
	Ymax: 10 ⁶
	Ymin: -10 ⁶
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird der letzte gültige Wert angezeigt und das Ausgangssignal wird ungültig. Die Berechnung wird in dieser Zeit angehalten.

Die Bandbreite des berechneten Signals ist begrenzt und hängt von der Aktualisierungsrate ab. Bei der unter max. Bandbreite angegebenen Frequenz wird das Signal Null.

Aktualisierungsrate	-3 dB bei	max. Bandbreite
19200/s (Standard)	3,6 kHz	4,8 kHz
38400/s	7,2 kHz	9,6 kHz

13.2.27 Kartesische zu Polarkoordinaten

Funktion	Die Berechnung wandelt zwei Eingangskanäle, die die Position (x, y) eines Punktes im kartesischen Koordinatensystem darstellen, in die entsprechenden Polarkoordinatenwerte um. Dabei entstehen zwei Ausgangskanäle, ein Kanal mit den Winkelwerten (θ , theta) und ein Kanal mit den Radiuswerten (r). Der Wertebereich für den Winkel geht dabei von -179,99° bis +180°. Multiplizieren Sie ggf. den Wert mit $\pi/180$, um das Bogenmaß zu erhalten.
Quellen	X: X-Koordinate Y: Y-Koordinate
Ausgänge	Radius r, gleiche Einheit wie x, y Winkel Θ (theta) in Grad
Parameter	keine
Voreinstellung	X: 1 Y: 0
Ausnahme- behandlung	Falls eines der Quellsignale ungültig ist, wird auch das Ausgangssignal ungültig. Die Berechnung wird trotzdem ausgeführt und ausgegeben.

13.2.28 Polarkoordinaten zu Kartesischen Koordinaten

Funktion	Die Berechnung wandelt zwei Eingangskanäle, die die Position (Radius r, Winkel Θ = theta) eines Punktes in Polarkoordinaten darstellen, in die entsprechenden kartesischen Koordinaten um. Dabei entstehen zwei Ausgangskanäle, ein Kanal mit den x-Werten und ein Kanal mit den y-Werten. Der Winkelwert muss dabei in Grad (-360° bis +360°) vorliegen.
Quellen	Winkel: Winkel in Grad
	Radius: Radius r
Ausgänge	X: X-Koordinate, gleiche Einheit wie r
	Y: Y-Koordinate, gleiche Einheit wie r
Parameter	keine
Voreinstellung	Winkel: 0
	Radius: 0
Ausnahme- behandlung	Falls eines der Quellsignale ungültig ist, wird auch das Ausgangssignal ungültig. Die Berechnung wird trotzdem durchgeführt und ausgegeben.

13.2.29 Modulo-Funktion

Funktion	Berechnet den Rest einer Division. Sie können die Berechnung nicht nur für ganze Zahlen, sondern auch für reelle Zahlen verwenden. Bei negativen Zahlen wird für das Ergebnis das gleiche Vorzeichen wie für die Signalquelle verwendet und ein Absolutwert kleiner als der Absolutwert des Divisors berechnet.
Quelle	Eingang
Ausgang	Ergebniskanal
Parameter	Divisor
Voreinstellung	Eingang: 0 Divisor: 1
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird der letzte gültige Wert angezeigt und das Ausgangssignal wird ungültig. Die Berechnung wird in dieser Zeit angehalten.

13.2.30 Konstantsignal

Die Berechnung ermöglicht Ihnen die Festlegung von konstanten Werten. Die Konstanten ungültig, 0 (konstant 0), 1 (konstant 1) und -1 (konstant -1) sowie π (pi), π /2 (pi/2) und $2*\pi$ (2*pi) stehen immer zur Verfügung und müssen nicht angelegt werden.

13.2.31 Technologiefunktionen

13.2.32 Zweipunktregler

Funktion	Die Berechnung realisiert einen Zweipunktregler mit verzögert-nachgebender Rückführung. Tr2 muss größer sein als Tr1. Tr1 ist die dominante Streckenkonstante.
Quellen	Sollwert
	Istwert
Ausgang	Flag, wird in den Flags der berechneten Kanäle ausgegeben.
Parameter	Hysterese
	Kr: Rückführ-Verstärkung, gemeinsame Verstärkung der beiden par- allelen Rückführzweige.
	Tr1: Rückführ-Zeitkonstante des negativen Rückführzweigs (PT1-Glied), Tr1 < Tr2.
	Tr2: Rückführ-Zeitkonstante des positiven Rückführzweigs (PT1-Glied), Tr1 < Tr2.

Voreinstellung	Sollwert: 0
	Istwert: 0
	Hysterese: 1
	Kr: 0
	Tr1, Tr2: 10 ³⁸ ; damit sind die Rückführzweige quasi abgeschaltet.
Ausnahme- behandlung	Falls entweder Soll- oder Istwert ungültig sind, werden die Rechenwerte der Rückführung eingefroren und der Ausgang wird deaktiviert.

Die Stellgröße des Reglers wirkt auf ein PT1-Glied, dessen Ausgangssignal subtraktiv die Regelabweichung beeinflusst. Ein weiteres PT1-Glied mit größerer Zeitkonstante beeinflusst die Regelabweichung additiv. Damit wird die Sprungantwort der Rückführung nach genügend langer Zeit Null: Im eingeschwungenen Zustand des Regelkreises subtrahieren sich die Gleichspannungsanteile der beiden zurückgeführten sägezahnförmigen Signale der PT1-Glieder. Aktiv bleibt die relativ kleine Differenz der beiden Welligkeiten als Wechselspannungsüberlagerung um die Regelabweichung. Die Amplituden dieser Welligkeit sind durch die Größe der Hysterese beziehungsweise durch die sich einstellende Schaltfrequenz gegeben. Mit steigender Zeitkonstante der subtraktiven Rückführung wird die Schaltfrequenz des Regelkreises niedriger. Mit steigender Verstärkung Kr wird die Schaltfrequenz höher, die Regelabweichung größer und das Überschwingverhalten der Regelgröße geringer.

13.2.33 PID-Regler

Funktion	Die Berechnung realisiert einen PID-Regler in Parallelstruktur. Der PID-Regler (proportional-integral-derivative controller) besteht aus den Anteilen des P-Gliedes, des I-Gliedes und des D-Gliedes. Die Parallelstruktur des Reglers ermöglicht das Verhindern des Wind-up-Effekts. Über Ymax und Ymin können Sie das Ausgangssignal begrenzen. Tp ist die parasitäre Zeitkonstante mit 1/Aktualisierungsrate (52 μ s bei 19200 Hz). $ \text{Kp} \left(1 + \frac{1}{\text{Ti} * \text{s}} + \frac{\text{Td} * \text{s}}{\text{Tp} * \text{s} + 1} \right) $
Quellen	Sollwert
	Istwert
	Einschalten mit: ermöglicht, den Regler zu deaktivieren und ein definiertes Signal auszugeben.
Ausgang	Ergebniskanal: Reglerausgang

Parameter	Kp: Verstärkung, P-Anteil		
	Ti: Nachstellzeit, I-Anteil		
	Td: Vorhaltezeit, D-Anteil		
	Ymax: obere Begrenzung des Reglerausgangs		
	Ymin: untere Begrenzung des Reglerausgangs		
	Wert bei "ungültig"-Signal: der Wert wird ausgegeben, wenn Einschalten mit auf Low geht.		
Voreinstellung	Kp = 0		
	$Ti = 10^{38}$		
	Td = 0		
	Ymax = 10^{20}		
	Ymin = -10 ²⁰		
	Wert bei "ungültig"-Signal: 0		
Ausnahme- behandlung	Falls entweder Soll- oder Istwert ungültig sind, wird der Regler gestoppt und der Wert wird ungültig; der Ausgang behält jedoch den letzten Wert. Falls der Regler deaktiviert wird (Einschalten mit = 0), wird der Wert von Wert bei "ungültig"-Signal ausgegeben.		

Sie dürfen den PID-Regler nicht als reinen P-Regler definieren, mindestens ein I-Anteil muss zusätzlich vorhanden sein.

13.2.34 RTD Pt100 an PX455

Funktion	Die Messkarte PX455 ermöglicht den Anschluss eines Pt100-Widerstandsthermometers in Halbbrückenschaltung (100 Ohm Ergänzungswiderstand zur Halbbrücke). Mit dieser Funktion können Sie das gemessene Signal in den Temperaturwert in °C umrechnen lassen. Das Eingangssignal der Berechnung muss in mV/V vorliegen, der Anzeigebereich geht von -100 °C bis +500 °C.	
Quelle	Eingang: Signal vom PX455	
Ausgang	Ergebniskanal: Temperatur in °C	
Parameter	Leitungswiderstand: abhängig vom Anschluss des Pt100	
	- Der Ergänzungswiderstand ist direkt am PX455 angeschlossen	
	In diesem Fall müssen Sie den Widerstand der Leitung zum Widerstandsthermometer (einfache Distanz) hier angeben.	
	- Der Ergänzungswiderstand ist mit der gleichen Leitungslänge angeschlossen wie das Widerstandsthermometer	
	In diesem Fall geben Sie hier 0 ein, da sich die Leitungswiderstände durch das Brücken-Layout kompensieren.	

Voreinstellung	Leitungswiderstand: 0
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird der letzte gültige Wert angezeigt und das Ausgangssignal wird ungültig. Die Berechnung wird in dieser Zeit angehalten.
	Falls der Temperaturwert außerhalb des Anzeigebereichs liegen würde, wird -333.3°C ausgegeben und der Ausgang wird ebenfalls ungültig.

13.2.35 Signalgeneratoren (Rechteck, Dreieck, Sinus, ...)

Funktion	Die Berechnung erzeugt ein periodisches Signal, z. B. eine Sinusschwingung. Legen Sie die gewünschte Frequenz, die Amplitude und – falls gewünscht – einen Offset fest. Als Signalformen stehen Ihnen Sinus, Rechteck, Dreieck, Zähler, Konstante und (weißes) Rauschen zur Verfügung. Das Signal an Einschalten mit bestimmt, ob die gewählte Funktion ausgegeben wird. Bei einem Low-Signal wird die Ausgabe gestoppt und der bei Offset angegebene Wert ausgegeben. Wird das Signal wieder High, beginnt eine neue Ausgabeperiode. Bei periodischen Signalen können Sie mit Anzahl der Perioden festlegen, wie oft das Signal (Sinusperioden, Rechteckperioden etc.) ausgegeben wird. Die Angabe von 0 bedeutet kontinuierliche Ausgabe.
Quelle	Einschalten mit: startet bzw. stoppt die Sequenz
Ausgang	Ergebniskanal
Parameter	Funktion: Sinus, Rechteck, Rauschen, Zähler, Konstante, Dreieck.
	Frequenz: 0 Aktualisierungsrate/4 (Voreinstellung 4800 Hz); nur wirksam bei Sinus, Rechteck, Dreieck.
	Anzahl der Perioden: Anzahl der auszuführenden Perioden. Nur wirksam bei periodischer Wellenform. Null bedeutet, dass der Vorgang endlos ausgeführt wird. Maximaler Wert 2 ³¹ -1.
	Amplitude: Signalamplitude
	Offset: wird nach der angegebenen Anzahl von Perioden ausgegeben
Voreinstellung	Einschalten mit: 1
	Funktion: Sinus
	Frequenz: 100 Hz
	Anzahl der Perioden: 0 (endlos)
	Amplitude: 1
	Offset: 0
Ausnahme- behandlung	Falls das Ausgangssignal außerhalb des Darstellungsbereiches liegt, wird NaN (±3.4*10 ³⁸) ausgegeben.

Verwenden Sie als maximale Frequenz des Signals 1/10 der Aktualisierungsrate, da andernfalls das Ausgabesignal aus zu wenigen Punkten gebildet wird. Dies führt z. B. bei einer Sinusschwingung zu einer verzerrten (treppenförmigen) Kurvenform.

Funktion Zähler: der Zähler erzeugt bei einem Offset von 0 eine Zahl zwischen -Amplitude und +Amplitude, die mit der Aktualisierungsrate (Voreinstellung 19200 Hz) um jeweils eins erhöht wird.

Funktion weißes Rauschen: das Rauschsignal wird über eine pseudo-zufällige Sequenz mit einer Periode von 2^{31} erzeugt.

13.2.36 Logik-Bausteine (UND, ODER ...)

Funktion	Die Berechnung stellt verschiedene logische (Boole'sche) Funktionen zur Verfügung: AND, NAND, OR, NOR, XOR, XNOR und NOT. Je nach Funktion stehen ein oder mehrere Funktionsbausteine pro Berechnung zur Verfügung, z. B. 1 AND-Funktion, 2 XOR-Funktionen oder 4 NOT-Funktionen
Quellen	Eingänge A D: digitale Signale
Ausgänge	Y1
	Y2: nur verwendet mit XOR, XNOR, NOT
	Y3: nur verwendet mit NOT
	Y4: nur verwendet mit NOT
Parameter	Funktion: AND, NAND, OR, NOR, XOR, XNOR oder NOT
Voreinstellung	Eingänge A D: 0
	Funktion: AND
Ausnahme- behandlung	_

13.2.37 Multiplexer 4:1

Funktion	Abhängig von den Steuerbits wird Eingang 1, Eingang 2, Eingang 3 oder Eingang 4 ausgegeben				
	Steuerbit 0	0	1	0	1
	Steuerbit 1	0	1	0	1
	Ausgang	Eingang 1	Eingang 2	Eingang 3	Eingang 4
Quellen	Eingänge 0 3				
Ausgang Ergebniskanal					
Parameter Steuerbit 0, 1					

Voreinstellung	Eingänge 0 3: 0
	Steuerbit 0: 0
	Steuerbit 1: Keine
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig. Falls das Ausgangssignal außerhalb des Darstellungsbereiches liegt, wird NaN (±3.4*10 ³⁸) ausgegeben.

13.2.38 Totzone

Funktion	Hält das Ausgangssignal konstant, solange sich das Eingangssignal um weniger als der bei Delta angegebene Wert vom Ausgangssignal unterscheidet. Wird der Wert überschritten, wird das aktuelle Eingangssignal ausgegeben und als neuer Wert für die Berechnung der Abweichung verwendet.
	Die Funktion unterstützt Sie dabei, einen (Ausgabe-)Wert so lange wie möglich konstant zu halten, auch wenn sich das (Eingangs-)Signal leicht ändert. Erst bei größeren Änderungen wird auch der Ausgang nachgezogen. Innerhalb des mit Delta festgelegten Bereiches erfolgt keine Änderung des Ausgangssignals (Totzone).
Quelle	Eingang
Ausgang	Ergebniskanal
Parameter	Delta: die maximale Signaländerung, bevor das Ausgangssignal geändert wird.
Voreinstellung	Eingang: 0
	Delta: 1
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig. Die Berechnung wird in dieser Zeit angehalten.

13.2.39 Flankendetektor

Funktion	Die Berechnung überwacht, ob ein digitales Signal den Pegel ändert, und gibt dann einen Impuls aus. Sie können auf nur steigende Flanken, auf nur fallende Flanken oder auf beide Flanken überwachen. Die Länge des Impulses ist 1/Gesamtaktualisierungsrate (Voreinstellung 51 µs). Die Berechnung besteht aus zwei Funktionsblöcken, d. h., Sie können zwei verschiedene digitale Signale (A und B) überwachen.		
	Eingang Steigende Flanke, High-aktiv Beide Flanken, Low-aktiv		
Quellen	Eingang A und B		
Ausgänge	Flag A und B		
Parameter	Funktion A, B: bei steigender/fallender oder bei beiden Flanken High aktiv A, B: wenn ja, ist der Ausgang bei erfüllter Bedingung High, ansonsten Low.		
Voreinstellung Eingang A, B: 0 Funktion A, B: bei steigender Flanke High-aktiv A, B: ja			
Ausnahme- behandlung	_		

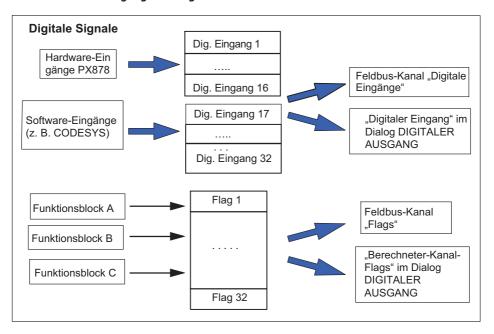
13.2.40 Pulsbreitenmessung

Funktion	Die Berechnung misst die Zeit zwischen zwei Flanken. Sie können einen oder zwei (digitale) Kanäle als Eingang verwenden. Das Ergeb- nis kann als Zeit (Sekunden oder Millisekunden) oder als Frequenz (1/s) ausgegeben werden Maximale Auflösung (kleinste Messdauer): 1/Aktualisierungsrate; bei
	einer Aktualisierungsrate von 19200/s entspricht dies ca. 52 µs.
	Maximale Messdauer: 1/Aktualisierungsrate * 8.388.608; bei einer Aktualisierungsrate von 19200/s entspricht dies ca. 437 s.
Quellen	Start-Eingang: Startet die Zeitmessung
	Stopp-Eingang: Stoppt die Zeitmessung

Ausgang	Ergebniskanal: enthält die Pulsdauer oder die Frequenz
Parameter	Start: bei steigender/fallender Flanke
	Stopp: bei steigender/fallender Flanke
	Wenn Start- und Stopp-Bedingung (Eingang, Flanke) identisch sind, wird die Periodendauer gemessen. Sonst wird die Pulslänge ge- messen.
	Ergebnistyp: Frequenz, Zeit (in Sekunden oder Millisekunden)
Voreinstellung	Start-Eingang: keine
	Stopp-Eingang: keine
	Start: bei steigender Flanke
	Stopp: bei steigender Flanke
	Ergebnistyp: Zeit
Ausnahme- behandlung	Der Ausgang wird ungültig und die Berechnung wird gestoppt, wenn die maximale Messdauer (ca. 437 s) überschritten wird. Dieser Zustand wird mit dem nächsten Startsignal zurückgesetzt

Pulsdauer, entsprechende Frequenz und erreichbare Messunsicherheit bei einer Aktualisierungsrate von 19200/s.

Puls-/Periodendauer in ms	Frequenz in Hz	Messunsicherheit in %
1	1000	5,21
2	500	2,60
5	200	1,04
10	100	0,52
20	50	0,26
50	20	0,10
100	10	0,05
200	5	0,03
500	2	0,01
1000	1	0,01


13.2.41 Timer

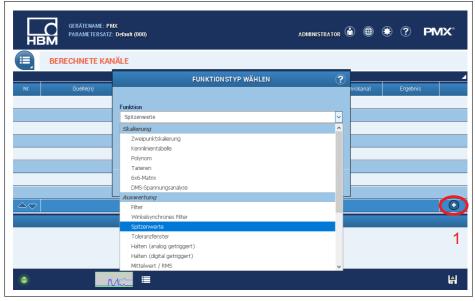
Funktion	Setzt nach einer einstellbaren Zeit (Intervall) ein Flag auf High und hält den Pegel über die Flag-Pulslänge, bevor der Pegel wieder auf Low zurückgesetzt wird. Falls Sie 0 für die Flag-Pulslänge eingeben, wird das Flag mindestens für ein Aktualisierungsintervall (1/Aktualisierungsrate) auf High gesetzt. Das maximale Intervall beträgt 100000 Sekunden. Die Flag-Pulslänge sollte kleiner als das Intervall sein, da sonst der Pegel immer High ist, solange der Timer läuft.
	Der Ablauf kann nur 1 Mal bei einer positiven Flanke erfolgen (Typ: Einzelschuss) oder immer wieder wiederholt werden (Typ: Kontinuierlich), solange ein positives Quellsignal anliegt. Beim Einzelschuss startet eine positive Flanke den Timer und erst nach Ablauf des Timers startet die nächste positive Flanke den Timer erneut. Im kontinuierlichen Modus startet der Timer, sobald ein positives Quellsignal anliegt, und startet nach dem Ablauf des Intervalls sofort erneut. Sobald kein positives Quellsignal mehr anliegt, wird der Timer gestoppt und erst beim Anlegen eines positives Quellsignal erneut gestartet.
Quellen	Einschalten/Starten mit: der Timer startet mit einem High-Pegel
Ausgänge	Ergebniskanal: aktueller Zeitwert; 0 beim Start des Timers, der Wert von Intervall am Ende des Zeitintervalls. Nach dem Stopp des Timers wird konstant die Intervallzeit ausgegeben. Flag: wird bei Ablauf des Timers auf High gesetzt.
Parameter	Intervall: Dauer des Timerintervalls
	Typ: kontinuierlich oder Einzelschuss
	Flag-Pulslänge: Dauer des Ausgangsimpulses
Voreinstellung	Einschalten/Starten mit: 1
	Intervall: 1 s
	Typ: kontinuierlich
	Flag-Pulslänge: 0,1 s
Ausnahme- behandlung	_

13.2.42 Verbindungskanal mit (optionaler) Verzögerung (CODESYS)

Funktion	Der Verbindungskanal gibt das Eingangssignal am Ausgang wieder aus, auf Wunsch auch verzögert. So können Sie das Eingangssignal mit dieser Funktion duplizieren, um es z. B. an andere Funktionen wie Filter weiterzuleiten. Die Funktion ist bei der PMX-Ausführung mit CODESYS (WGX001) auch dazu geeignet, um in CODESYS ermittelte Werte oder Signale an andere Kanäle oder Ausgänge weitergeben zu können. Verzögerung: Geben Sie die Anzahl von Zyklen ein, um die verzögert werden soll. Die Zykluszeit hängt von der Aktualisierungsrate ab, 1 Zyklus = 1/Aktualisierungsrate. Bei einer Aktualisierungsrate von 19200 Hz (Voreinstellung) entspricht ein Zyklus 52,08 µs (1 eingeben). Die Eingabe von 0 bedeutet "keine Verzögerung".
Quelle	Eingang
Ausgang	Ergebniskanal
Parameter	Verzögerung: Angabe in Zyklen
Voreinstellung	Eingang: 0 Verzögerung: 0
Ausnahme- behandlung	Falls das Quellsignal ungültig ist, wird auch das Ausgangssignal ungültig. Der Puffer mit den verzögerten Werten wird komplett gelöscht und der Ausgang wird erst wieder gültig, wenn der Puffer erneut komplett mit gültigen Werten gefüllt ist.

13.2.43 Verarbeitung digitaler Signale

13.3 Beispiele zu Berechnungen

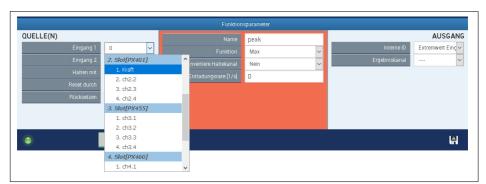

Tipp

Beispiele zu den Berechnungskanälen finden Sie in den Tecnotes auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

13.3.1 Spitzenwerterzeugung

Bevor Sie mit der Konfiguration beginnen, stellen Sie bitte sicher, dass Sie die erforderlichen Rechte haben, um Änderungen vorzunehmen:

- Klicken Sie rechts oben auf das Symbol mit der Person und w\u00e4hlen Sie Wartung oder Administrator.
- Klicken Sie dann auf Einstellungen > Berechnete Kanäle.
- Klicken Sie auf Funktion hinzufügen.
- Nun können Sie eine von vielen Funktionen für jeden einzelnen Kanal wählen. In diesem Beispiel verwenden wir "Spitzenwert (Maximum)".



Im nächsten Abschnitt nehmen Sie die Einstellungen für Ihre Funktion vor.

- Wählen Sie Spitzenwerte.
- Wählen Sie einen Eingangskanal bei Eingang 1.
- Wählen Sie Max bei Funktion.
- ▶ Wählen Sie bei **Ausgang** das Signal **Extremwert Eingang 1** aus.

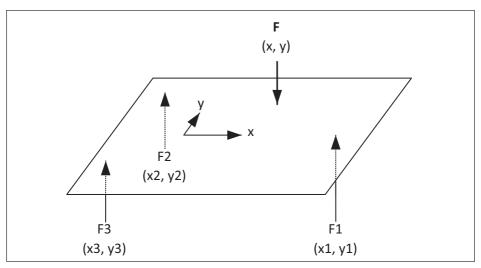
- Legen Sie fest, auf welchem Ergebniskanal das Maximum ausgegeben werden soll.
- Geben Sie einen Namen für diesen Kanal fest.
- Definieren Sie auch die Anzahl der Nachkommastellen, die physikalische Einheit und die Aktualisierungsrate fest.

Die meisten Einstellungen können Sie später jederzeit ändern; die Hauptfunktion "Spitzenwerte" kann jedoch nicht mehr geändert werden.

Vergessen Sie nicht, Ihre Änderungen zu speichern. Klicken Sie dazu auf das Disketten-Symbol unten rechts.

Tipp

Hilfe bietet Ihnen die Hilfe-Funktion oben im PMX Webbrowser (rot markiert).

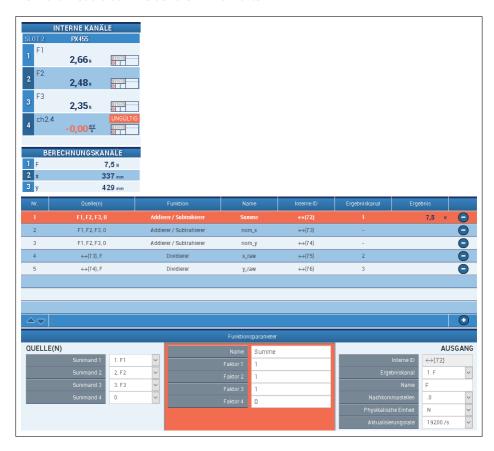

13.3.2 Berechnung des Kraftangriffpunktes

Kurzbeschreibung

Ermittlung des Kraftangriffspunkts an einer Platte mit drei Kraftaufnehmern.

Einleitung

Mit drei Kraftaufnehmern F1, F2, F3 lassen sich die Koordinaten einer zu messenden Kraft F leicht bestimmen.

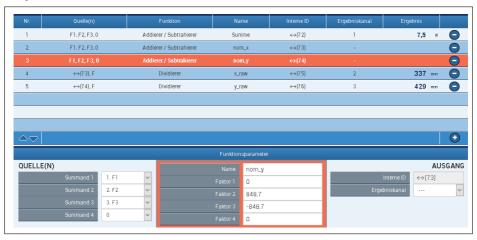

Eine Platte ist auf drei Aufnehmern gelagert, die Kraft F greift orthogonal an. Aus dem Momentengleichgewicht bzgl. des Ursprungs ergibt sich der Angriffspunkt der Kraft zu

$$x = \frac{F1 \cdot x1 + F2 \cdot x2 + F3 \cdot x3}{F}$$

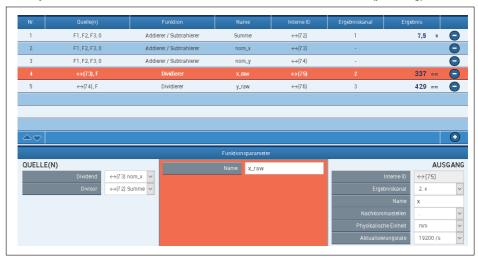
$$y = \frac{F1 \cdot y1 + F2 \cdot y2 + F3 \cdot y3}{F}$$

Vorgehensweise

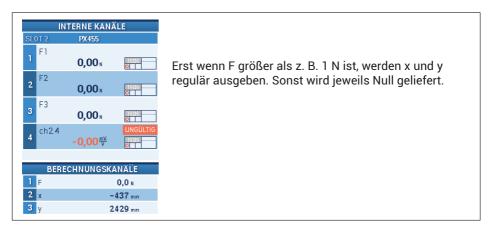
Die Kraft F ist die Summe der drei Einzelkräfte:



In einem Zwischenschritt werden die Zähler für die x- und y-Berechnung ermittelt. Die Koordinaten x1, y1, x2,.... befinden in den Faktoren der Summanden.


Für x:

Für y:

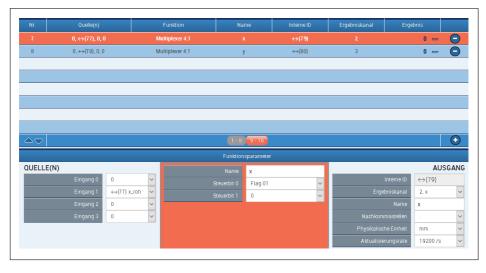


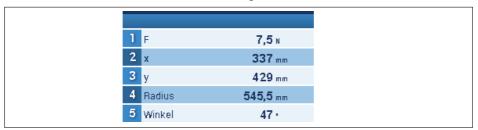
x und y werden schließlich mit zwei Divisionen berechnet. Hier für x (y analog):

Nicht plausible Werte im unbelasteten Zustand

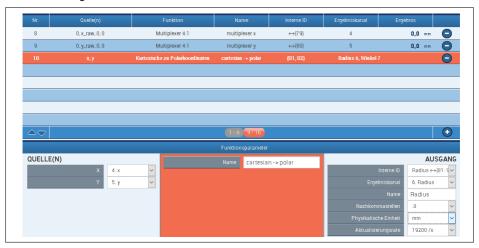
Bei F nahe Null dominiert Rauschen. Für x und y werden nicht plausible Werte geliefert:

Ein Trigger-Block setzt das Flag_01, wenn F größer dem Mindestwert ist:


Die beiden Schwellwerte für den Trigger. Es wird nur die untere Schaltschwelle bei 1 N benötigt. Für die obere Schwelle wird ein Wert gewählt, der weit über dem Messbereich liegt:

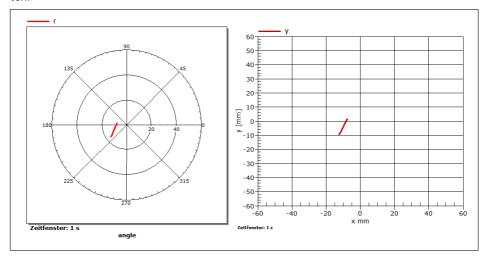

Zwei Multiplexer-Blöcke schalten schließlich zwischen Null und den berechneten Werten um.

Hier für x:



Tipps

- 1. Im Fall einer Division durch Null liefert ein Divisor Not-a-Number (NaN).
- 2. Bei Bedarf können auch Polarkoordinaten geliefert werden:


Die Einstellungen für Radius ...:

... und Winkel:

Darstellung einer wandernden Kraft mit catman in Polar- und kartesischen Koordinaten:

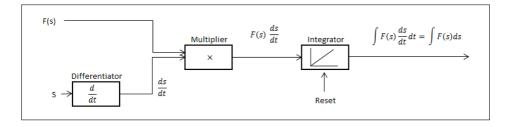
13.3.3 Mechanische Arbeit über Kraft-Weg-Integration

Kurzbeschreibung

Kraft-Weg-Integration mit PMX zur Messung der mechanischen Arbeit

Einleitung

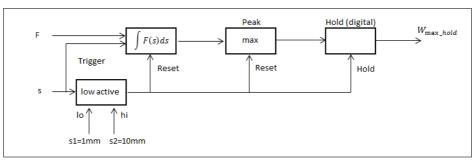
Die verrichtete mechanische Arbeit W soll durch Integrieren der Kraft F über dem Weg s gemessen werden.


$$W = \int F(s) \cdot ds$$

(Wegen der zeitdiskreten Bearbeitung handelt es sich tatsächlich um eine Summation, hier wird jedoch weiter der Begriff Integration verwendet.)

Beginn und Ende der Integration werden über messbare Ereignisse bestimmt, z. B. feste Weg- oder Kraftwerte oder Flanken an einem digitalen Eingang.

Vorgehensweise


Die Integration über den Weg wird erreicht, indem der Weg zunächst nach der Zeit abgeleitet, mit F multipliziert und anschließend wieder über die Zeit integriert wird:

Beispiel A

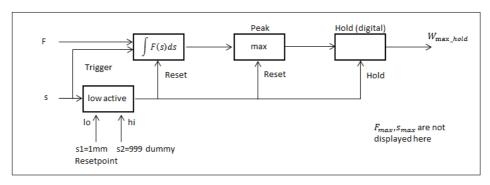
Integration über den **Weg von s1 bis s2**:
$$W = \int_{s1}^{s2} F(s) \cdot ds$$

Hier bestimmen die Ereignisse s=s1 und s=2 Beginn und Ende der Integration. Diese Wegpunkte müssen während des Prozesses in jedem Fall erreicht werden, sonst wird Beginn oder Ende nicht erkannt.

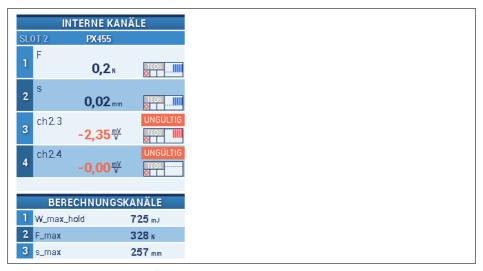
Die Übersicht mit den Messgrößen F und s sowie der berechneten Arbeit

INTERNE KANÄLE		
SLOT 2	PX455	
1 F	0,2 N	TEDS
2 ^S	0,02 mm	TEDS
3 ch2.3	-2,35 mV	UNGÜLTIG
4 ch2.4	-0,00 mV	UNGÜLTIG TEDS
	CHNUNGSK.	ANÄLE
1 W_max_hold 0 mJ		

Die Funktionsblöcke in der Übersicht

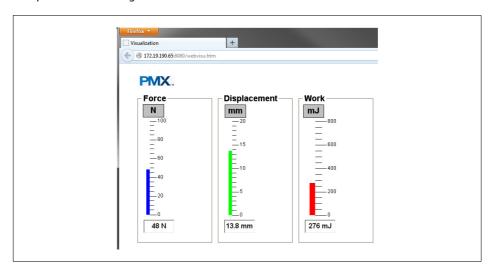

Beispiel B

Messung des Maximalwerts der Arbeit.


Dies ist sinnvoll wenn z.B. der Endwert des Weges unbestimmt ist oder nicht zuverlässig erreicht werden kann.

Die Integration beginnt und endet am gleichen Wegpunkt s=s1: $W = \oint_{s1} F(s) \cdot ds$.

Die Arbeit kann beim Zurückfahren des Weges wieder abnehmen, z.B. durch Feder-Entspannung. Der Maximalwert mit einem Peak-Block festgehalten.


Zusätzlich zu Beispiel A werden hier noch die Maxima von F und s ausgegeben:

Die Funktionsblöcke in der Übersicht:

Beispiel Visualisierung mit CODESYS WebVisu

Anhang

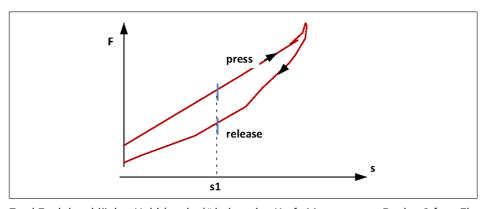
Die Funktionsblöcke des Beispiels A im Einzelnen:

Bitte beachten Sie, dass der Hold-Block in der Berechnungsreihenfolge *vor* dem Peak-Block steht. Die Flanke von Flag_01 bewirkt somit zuerst die Haltefunktion und dann den Reset des Peak-Blocks.

Tipp

In Beispiel A wird der Hold-Block bereits beim Zurückfahren des Weges wieder zurück gesetzt. Wenn der Wert länger gehalten werden soll, könnte der Block z. B. über ein digitales Signal von extern oder von einem weiteren Trigger-Block zurückgesetzt werden.

13.3.4 Prüfung der Kraft an bestimmten Punkten auf der Wegachse


Kurzbeschreibung

Bei einer Hubbewegung mit Kraft- und Wegmessung wird die Kraft an einem bestimmten Punkt auf der Wegachse gemessen. Die gemessene Kraft soll innerhalb eines Akzeptanzbandes liegen, es wird eine gut/schlecht-Entscheidung getroffen.

Die Kraft jeweils einmal auf dem Hin- und einmal auf dem Rückweg geprüft.

Einleitung

In diesem Beispiel hat die Kraft etwa folgenden Verlauf:

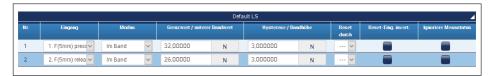
Zwei Funktionsblöcke "Hold (analog)" halten den Kraft-Messwert am Punkt s1 fest. Ein Block auf dem Hinweg, der andere auf dem Rückweg. Zwei Grenzwertschalter prüfen, ob die Werte jeweils innerhalb eines Akzeptanzbandes liegen. Die steigende Kraft wird im Folgenden mit "press" bezeichnet, die fallende mit "release".

Zwei digitale Ausgänge zeigen das Ergebnis der Grenzwertschalter.

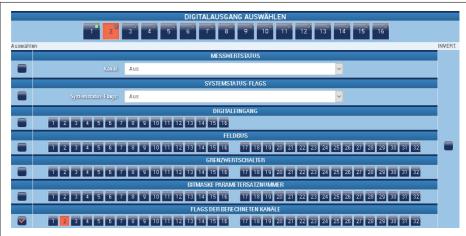
Vorgehensweise

Bei steigendem Weg "Press":

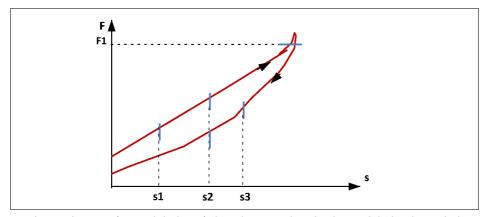
- Der Kraft-Messwert F wird am Punkt s1 = 5 mm mit einem Funktionsblock "Halten (analog getriggert)" festgehalten. Der Weg s steuert die Haltefunktion, er liegt deshalb am "Steuerungseingang" an.
- Der Funktionsblock liest bei s = 5 mm ("Untere Grenze") die Kraft F und hält sie am Ausgang.
- Der obere Wert des Haltebereiches ("Obere Grenze") wird hier nicht benötigt und nimmt einen Dummy-Wert außerhalb des Messbereichs an.
- Die Einstellung "Nur bei Eintritt" bedeutet, dass die Kraft bei jedem Eintritt in den Haltebereich (5 mm ... 999 mm) genau ein Mal gelesen und gehalten wird.


Bei fallendem Weg, "Release":

 Der Haltebereich umfasst jetzt den Bereich (-999 mm ... 5 mm), -999 ist hier wieder ein Dummy-Wert. Der Block hält den Kraft-Messwert, wenn der Weg s bei 5 mm von oben in den Haltebereich eintritt.


Auswertung durch Grenzwertschalter:

- Die Ausgänge der Halten-Blöcke sind die Eingänge von zwei Grenzwertschaltern.
- Schalter Nr. 1 meldet den korrekten Kraftwert bei steigendem Weg. Er ist dann aktiv, wenn das Signal "F (5 mm) press" im Intervall 32 N ... 35 N liegt.
- Die Einstellungen für Schalter Nr. 2 gelten analog, das Akzeptanzintervall ist 26 N ... 29 N.



Schließlich geben die digitalen Ausgänge Nr. 1 und 2 die Zustände der Grenzwertschalter Nr. 1 und 2 aus:

Tipps

- Eine Verletzung (statt Einhaltung) des Akzeptanzbandes lässt sich durch Umdrehen der Logik, z. B. bei den Grenzwertschaltern, anzeigen.
- Statt die Kraft an Punkten auf der Wegachse zu pr
 üfen, lässt sich selbstverständlich auch der Weg bei bestimmten Kraftwerten pr
 üfen.
- Mit entsprechend vielen Halten-Blöcken lassen sich noch mehr richtungsabhängige Prüfpunkte einrichten.
- Mit Parametersätzen lassen sich die Werte der Messpunkte und/oder der Aktzeptanzbänder auf andere Werte umgeschaltet. Hierzu wird eine Kopie des Teilparametersatzes "Messwerterfassung" (Acquisition) erstellt, in der die Zahlenwerte geändert werden. Die Teilparametersätze werden dann verschiedenen Parametersätzen zugeordnet, die z. B. via Feldbus oder digitale Eingänge umgeschaltet werden.
 - Statt einzelner Zahlenwerte lässt sich so auch die Struktur der berechneten Kanäle umschalten.
 - Die Grenzwertschalter werden über den Teilparametersatz "Grenzwerte" (Limit Switches) umgeschaltet.
- Die Aufgabe lässt sich auch mit "Trigger (Puls)"- und "Halten (digital)"-Blöcken lösen.

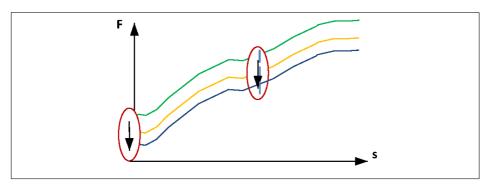
13.3.5 Kraft-Weg-Messung mit relativem Nullpunkt

Kurzbeschreibung

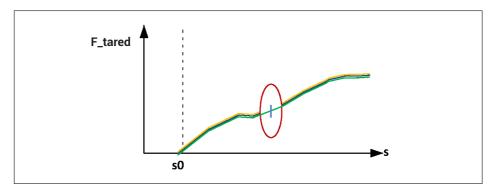
Bei einer Hubbewegung wird die Kraft F und der Weg s gemessen. Um zufällige Offsets in den Messgrößen auszugleichen, werden neue, offsetfreie Signale F_tared und s_tared generiert.

Fall A

Die Kraft wird am Punkt auf der Wegachse s = s0 zu Null gestellt.

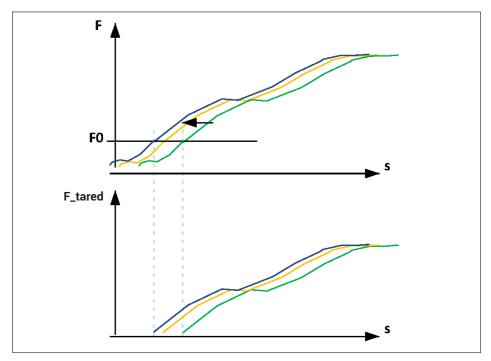

Fall B

Kraft und Weg werden bei der Kraft F = F0 zu Null gestellt.

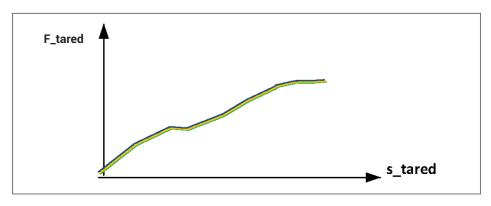

Einleitung

Fall A

Wird eine wegabhängige Kraft F auf Einhaltung von Grenzwerten überprüft, ist ein Offset der Kraft von Hub zu Hub störend. Die Kraft-Grenzwerte müssten für jede Hubbewegung angepasst werden.



Mit zwei Funktionsblöcken "Trigger (Bereich)" und "Tarieren" wird die Kraft unterhalb des Punkts s0 zu Null gesetzt. Der Kraftverlauf unterhalb von s0 ist für das Nullstellen ohne Bedeutung.



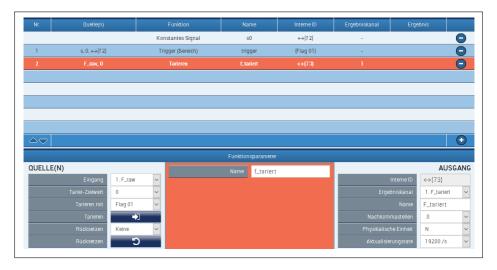
Fall B

Um einen Weg-Offset auszugleichen, soll der neue Kraft-Nullpunkt nicht anhand des Wegs, sondern durch die Kraft F0 bestimmt werden.

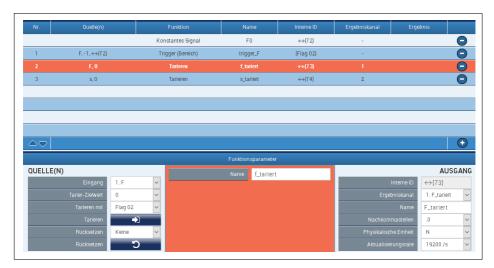
Gemäß Fall A lässt sich auch gleich der Weg-Nullpunkt verschieben. Dazu wird die gleiche Bedingung (F = F0) benutzt. Beide Größen, Kraft und Weg, haben jetzt einen neuen Nullpunkt.

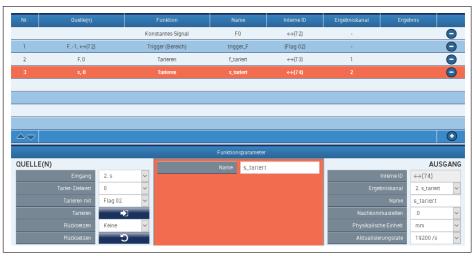
Vorgehensweise

Fall A


Ein konstantes Signal liefert s0, hier 5 mm:

Ein Trigger-Block setzt den Ausgang "Flag01" wenn der Weg s im Bereich $0 \dots 5 \text{ mm}$ liegt:


Schließlich setzt der Trigger-Block den Rohwert der Kraft F_raw unterhalb 5 mm zu Null. F_tariert ist der Offset-bereinigte Kraftwert:

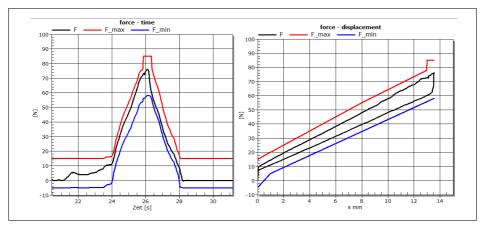


Fall B
Der Trigger-Block prüft jetzt die Kraft F gegen F0.

Kraft und Weg werden jeweils mit dem Signal "Flag02" zu Null gesetzt:

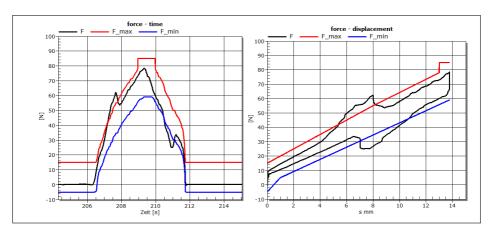
13.3.6 Prüfung der Kraft mit einem Toleranzband

Kurzbeschreibung


Bei einer Hubbewegung mit Kraft- und Wegmessung wird die Kraft kontinuierlich gegen ein Toleranzband geprüft. Die Toleranzgrenzen sind wegabhängig definiert. Ein Zähler zählt die Toleranzverletzungen und ein digitaler Ausgang meldet, wenn der Zäh-

lerstand größer als Null ist. Der Zählerstand wird zu Beginn jeder Hubbewegung automatisch gelöscht.

(Die erforderlichen Funktionsblöcke sind ab Firmware-Version 1.34 verfügbar.)


Einleitung

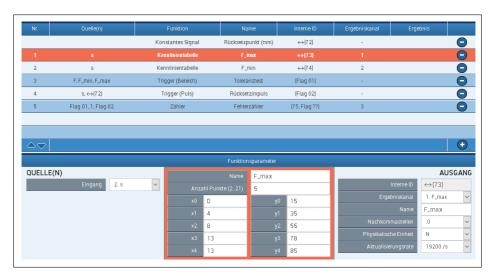
Die gemessene Kraft F wird gegen eine obere und eine untere Toleranz (F_max und F_min) geprüft. Zwei Wertetabellen liefern die Toleranzwerte abhängig vom gemessenen Weg s. Das Bild zeigt den Kraft-Zeit- und den Kraft-Weg-Verlauf einer Hubbewegung ohne Verletzung der Toleranzwerte.

Eine Hubbewegung ohne Toleranzverletzung

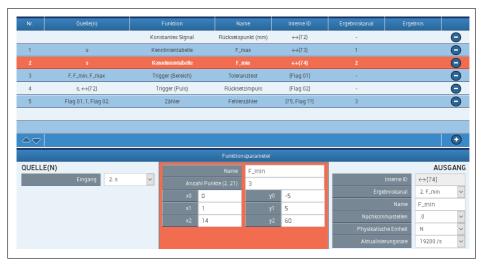
Ein Funktionsblock "Trigger (range)" vergleicht die Kraft F mit den Toleranzen. Eine Toleranzverletzung wird durch Flag_01 angezeigt und von einem "Zähler"-Block gezählt.

Zweifache Toleranzverletzung

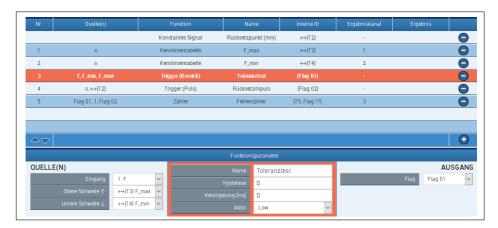
Die Overview nach zweifacher Toleranz-Verletzung. Der digitale Ausgang 01 zeigt den Fehler an.


Vorgehensweise

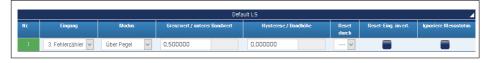
Die Tabelle der oberen Toleranzlinie hat fünf Stützpunkte. Die x-Werte sind der Weg in mm, die y-Werte die Toleranzgrenze der Kraft in N.

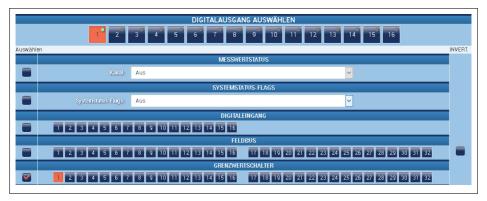


Tipp

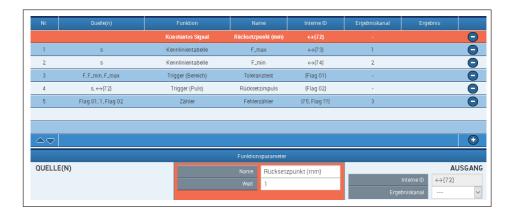

Stützpunkte mit gleichen x-Werten erzeugen einen Sprung in der Kennlinie, hier bei x3 = x4 = 13.

Die Tabelle der unteren Toleranzlinie:


Der Trigger-Block vergleicht F mit den Toleranzgrenzen. Innerhalb der Toleranz ist der Ausgang "Flag_01" low.


Der "Zähler"-Block zählt die Toleranz-Verletzungen. Er wird mit dem Flag_02 gelöscht:


Der Grenzwertschalter Nr. 1 detektiert Zählerstände ≥ 1:



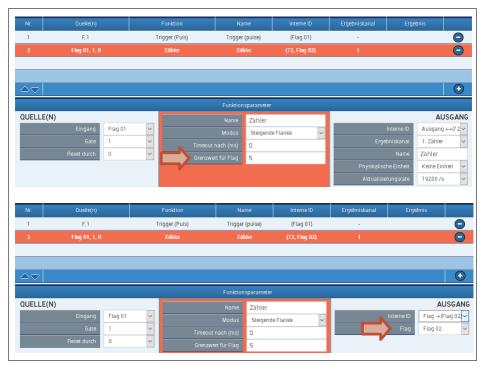
Schließlich gibt der digitale Output Nr. 1 den Zustand des Grenzwertschalters Nr. 1 aus:

Der Block "Trigger (Puls)" liefert den Impuls zum Löschen des Zählers, wenn der Weg 1 mm überschreitet.

13.3.7 Ereigniszähler

Im Folgenden wird gezeigt, wie ein Ereigniszähler in PMX programmiert werden kann. Es werden 2 Berechnungskanäle benötigt.

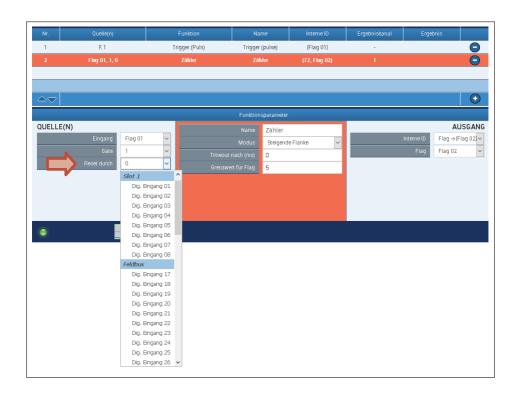
Berechnungskanal "Trigger (Puls)" anlegen


- · Eingang ist hier der Kraftmesswert.
- Als Schwelle kann ein vorher definierter Wert gewählt werden.
- Bedingung hier bei "Überschreiten" des Schwellwertes.
- Das Ergebnis wird hier in "Flag01" abgelegt.

Berechnungskanal "Zähler" anlegen

- · Eingang ist hier nun Flag01.
- Gezählt wird bei steigender Flanke.
- Über "Grenzwert" für Flag lässt sich ein Signal erzeugen, dass aktiv wird wenn dieser Zählerstand erreicht wird.

- Hier wird Flag02 aktiviert, wenn der Z\u00e4hlerstand 5 und gr\u00f6\u00dfer erreicht ist.
- Diese Flags können direkt über den Feldbus von der SPS abgefragt werden.



 Soll das Ergebnis, also das Erreichen des Zählerstandes, an einem Digitalausgang(PX878) signalisiert werden, wird dieses Flag als Eingangssignal für einen Digitalausgang gewählt. Hier wird der Digitalausgang Nr. 2 durch Flag02 aktiviert.

Das Zurücksetzen des Ereigniszählers kann durch folgende Möglichkeiten erfolgen:

- Digitaleingang (PX878).
- Über Feldbus-Steuerwort, dieses wird durch die Digitalen Eingänge 17 ... 32 in PMX abgebildet.
- Über andere Flags von anderen PMX-Berechnungskanälen.

14 TESTSIGNALE UND SIGNALGENERATOREN

Testsignale

Mit dem PMX können Sie verschiedene Signale erzeugen und ausgeben. Dies kann ein Testsignal während der Inbetriebnahmephase sein, um Messwerte zu simulieren und damit die Funktionsweise von Anlagenteilen zu prüfen. Solange ein Testsignals aktiviert ist, wird dies im PMX-Browser angezeigt und auch als Status auf dem Feldbus übertragen.

Signalgeneratoren

Das PMX verfügt über interne Signalgeneratoren, die mittels des Berechnungskanals "Signalgeneratoren" angelegt werden. In den Funktionsparametern stehen folgende Funktionen zur Verfügung:

Sinus, Rechteck, weißes Rauschen, Zähler, Konstante und Dreieck

Weitere Parametern sind:

Frequenz, Amplitude und Offset

Sie können den Signalgenerator mit einem Einschalter aktivieren. Mit der Angabe von Perioden legen Sie die Anzahl von Wiederholungen fest.

Neben den gängigen Wellenformen gibt es mit dem PMX auch die Möglichkeit, eine eigene Funktion durch die Angabe von bis zu 21 Punkten zu definieren. Diese Punkte werden linear miteinander verbunden. Dieses "Testprofil" steuern Sie z. B. durch eine Rampe (Timer).

Um eine solche Rampe zu erzeugen, erstellen Sie in der Kategorie "Technologie" den neuen Berechnungskanal "Timer". In dessen Funktionsparametern legen Sie die Periodendauer bzw. das Intervall der Rampe fest und ob diese kontinuierliche oder einmalig ausgegeben werden soll.

Weitere Signalformen können Sie über eine CODESYS-Applikation oder eine .NET-API-Applikation erzeugen.

Signalausgabe

Die erzeugten Signale können auch über die vorhandenen Schnittstellen im PMX ausgegeben werden. Bitte beachten Sie die maximalen Ausgaberaten je nach Medium.

Signalform	PMX-Signal- generatoren	CODESYS	.NET-API LabVIEW
Rechteck, Dreieck, Sinus, Rauschen	Х	Х	Х
21-Punkte-Kennlinie	х	х	х
Freie Signalform	-	х	х

	PMX-Signal- generatoren	CODESYS	.NET-API LabVIEW
Ausgaberate (max.):			
PX878 (±10 V)	19,2 kHz	2,4 kHz	10 Hz
Feldbus	1 9,6 kHz	1 9,6 kHz	1 9,6 kHz
Ethernet	19,2 kHz	2,4 kHz	19,2 kHz

Tipp

Praktische Beispiele zur Datenspeicherung befinden sich in den TechNotes im PMX-Downloadbereich auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

15 PARAMETERSÄTZE (REZEPTE)

Das PMX verfügt über 100 unabhängige Parametersätze (Messprogramme), die netz-ausfallsicher geräteintern im Flash gespeichert sind. Damit definieren Sie Mess-aufgaben oder Prüfschnitte, die später im laufenden Betrieb ohne zusätzliche Umrüstzeiten genutzt werden können. Sie können den aktiven oder einen nicht aktiven Parametersatz (EDIT MODE) konfigurieren. Die Umschaltung kann per Digitaleingänge, Feldbus oder auch über Ethernet, d. h. PMX-Befehlssatz, .NET-API, LabVIEW-Treiber oder CODESYS-Applikation erfolgen.

Wichtig

Die Konfiguration des aktiven Parametersatzes, sollte nicht im laufenden Betrieb erfolgen. Um Fehlfunktionen zu vermeiden dürfen Parametersätze erst nach Abschluss der jeweiligen Mess- oder Prüfaufgabe umgeschaltet werden. In allen Fällen stehen Statusbits bzw. Statusinformationen zur Verfügung, die das fehlerfreie Umschalten signalisieren (Digitalausgänge, Systemstatus, Zyklische Gerätedaten im Feldbusbetrieb).

Ein Parametersatz besteht immer aus den vier Teilparametersätzen:

- Sensordaten
- Messwerterfassung (enthält auch die berechneten Kanäle)
- Grenzwerte
- Digitalausgänge

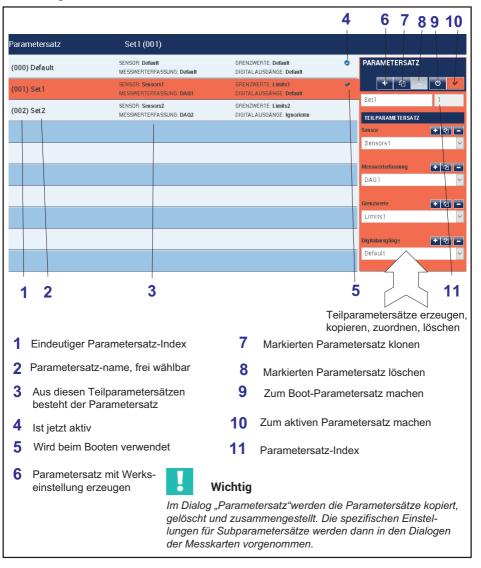
Ein Parametersatz wird aus den einzelnen Teilparametersätzen zusammengestellt. Die Einstellungen stehen in den Teilparametersätzen. Soll ein Teilparametersatz nicht verändert werden, so definieren Sie dafür "ignore". Damit wird dieser Teil beim Umschalten nicht verändert.

Je nachdem welche Teile in einem Parametersatz umgeschaltet werden, ergeben sich folgende Umschaltzeiten:

Sensorda- ten	Messwert- erfassung	Grenzwerte	Digital- ausgänge	Mittlere Umschaltzeit typ. in ms
1200	-	-	-	1200
-	950	-	-	950
1200	950	-	-	2150
-	-	100	-	100
1200	950	100	-	2250
	-	-	80	80
1200	950	100	80	2330

Wichtig

Wenn während des Speicherns eines Parametersatzes die Spannungsversorgung ausfällt, ist der Parametersatz zerstört und das PMX meldet sich nach dem Einschalten mit seiner Werkseinstellung. Um dies zu vermeiden, empfehlen wir ein Backup der Geräteeinstellungen auf PC.


15.1 Einrichten von Parametersätzen

Gehen Sie folgendermaßen vor:

- Erzeugen Sie einen Gesamt-Parametersatz.
- Rufen Sie einen der Teil-Parametersätze auf und ändern Sie die gewünschten Parameter.
- Speichern Sie zum Schluss den oder die Parametersätze durch Klicken auf das Diskettensymbol in der Statusleiste netzausfallsicher im PMX.

Verwaltung der Parametersätze

15.2 Ändern von Parametern in Parametersätzen

Zum Ändern der Teilparametersätze auf die jeweiligen Schaltflächen klicken und den gewünschten Teilparametersatz auswählen. Anschließend die Änderungen vornehmen.

15.3 Messprogramme (Parametersätze) speichern und laden

Speichern im PMX

Alle Einstellungen, die Sie im Gerät vornehmen, werden sofort wirksam, auch ohne zu speichern. Speichern schützt Ihre Einstellungen jedoch vor Datenverlust, sollte das Gerät ausgeschaltet werden. Um zu speichern, klicken Sie auf das Diskettensymbol unten rechts im Webbrowser.

Speichern auf und laden von PC

Über den Menüpunkt **Sicherung zum PC** wird ein XML-Datensatz erstellt, den Sie als Backup nutzen oder auf andere Geräte mit gleicher Bestückung der Mess- und I/O-Karten übertragen können. Der entsprechende Upload-Befehl im PMX-Browser

lautet **Wiederherstellen vom PC**, um die Parametersatzdatei wieder in das PMX zu laden.

Wichtig

Passwörter und Netzwerkeinstellungen werden bei dieser Methode nicht verändert (siehe auch Abschnitt 25.6, Seite 447).

Parametersätze werden nicht als einzelne Dateien gespeichert. Sie werden im XML-Datensatz für das gesamte Gerät abgebildet. Eine Offline-Konfiguration des Gerätes ist nicht möglich. Theoretisch ist es möglich, Parametersätze in der XML-Sicherungsdatei zu editieren, davon raten wir jedoch ab.

Beispiel:

Die Tabelle zeigt die Zuordnung Parametersatz zu Teilparametersätzen:

Parametersatz	Sensor	Messwert- erfassung	Grenzwerte	Digital- ausgänge
000 Werkseinstellung	Default	Default	Default	Default
001 Werkstück A	Default	Schnelles Filter	Grenzwerte Werkstück A	ignore
002 Werkstück B	Default	Langsames Filter	Grenzwerte Werkstück B	ignore

Die Umschaltung von Parametersätzen 000 auf 001 bewirkt folgendes:

Sensor Default -> Default	Keine Änderung, aber nach dem Umschalten werden garantiert die Einstellungen von "Sensor Default" verwendet.
Messwerterfassung Default -> "schnelles Filter"	Die Einstellungen in "schnelles Filter" werden aktiviert.
Grenzwerte Default -> "Grenzwerte Werkstück A"	Die Einstellungen in "Grenzwerte Werkstück A" werden aktiviert.
Digitalausgänge Default -> ignore	Keine Änderung, die "Digitalausgänge"-Ein- stellungen bleiben so wie sie sind; sie sind von der Vorgeschichte abhängig.

15.4 Gerätespeicher (Gerät klonen)

Über das Menü **Gerätespeicher** können Sie die kompletten Geräteeinstellungen auf Ihrem PC sichern oder von dort wiederherstellen. Sie können auch alle Einstellungen auf ein anderes Gerät übertragen (Gerät klonen). Voraussetzung ist, dass die Bestückung der PMX-Geräte identisch ist. Nicht übertragen werden Netzwerkeinstellungen, die Passwörter für die unterschiedlichen Benutzerebenen (Operator, Wartung, Administrator) und die CODESYS-Applikationen und CODESYS-Web-Visualisierungen.

Wichtig

Während eines Backups oder dem Laden der Geräteeinstellungen darf kein Messbetrieb und kein Steuer- und Regelungsbetrieb mit dem PMX stattfinden, um Fehlfunktionen zu vermeiden. Schalten Sie währen des Backups auch nicht die Betriebsspannung ab, da sonst die Einstellungen verloren gehen. Im Gerätespeicher finden Sie auch die Werkskalibrierscheine der Messkarten, das Herstellerzertifikat, die Gerätebeschreibungsdateien für die Feldbusse (PROFINET[®] IO, EtherCAT[®] und EtherNet/IP[™]) und die Log-Dateien. Außerdem liegen hier auch die Messwert-Dateien, die über CODESYS erfasst und gespeichert wurden. Alle Dateien können von hier auf einen PC heruntergeladen werden.

Sie können auch eigene Dateien in diesen Bereich hochladen oder Dateien vom PMX löschen.

16 KOMMUNIKATION MIT EINEM STEUERUNGSSYSTEM

Zur Anbindung des PMX in eine Maschinen- oder Anlagensteuerung stehen die digitalen Ein- und Ausgänge und die digitalen Schnittstellen (EtherCAT[®], PROFINET[®] IO oder EtherNet/IP[™]) zur Verfügung.

In allen Fällen wird auf die gleiche Gerätefunktion zugegriffen. Über die Schnittstelle stehen auch die Ein- und Ausgangssignale zur Verfügung. Diese können Sie den Tabellen in den Abschnitten 16.4 und 16.5 ab Seite 266 entnehmen.

16.1 Gerätebeschreibungsdatei

In der Gerätestammdaten-Datei sind die physikalischen Eigenschaften beschrieben (z. B. gesendete / empfangene Bytes). Sie ist nötig, um Master zu parametrieren und das Automatisierungsprogramm zu erstellen.

Verwenden Sie die folgenden Kombinationen von PMX-Firmware und Gerätebeschreibungsdateien. Diese befinden sich

- im PMX-internen Gerätespeicher,
- auf der Website https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

Wichtig

Diese Gerätebeschreibungsdateien sind wie das PMX modular aufgebaut. In der Konfigurationssoftware der jeweiligen Steuerung muss der PMX-Eintrag exakt dem verwendeten PMX mit seinen Einschubkarten und der Anzahl der übertragenen Berechnungskanäle angepasst werden.

PMX-Geräte- beschreibungsdateien	PMX-Firmware bis einschließlich 1.46	PMX-Firmware ab 2.0
	GSDML-V2.25-HBM-PMX- 20121025.xml	GSDML-V2.3-HBM-PMX_I RT-PLC-20141215.xml
	GSDML-V2.25-HBM-PMX_ IRT-20130404.xml	
	HBM_PMX.xml	HBM_PMX_rev2.xml
	HBM_PMX_023.eds	HBM_PMX_024.eds

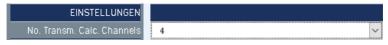
Beachten Sie beim Einsatz der PROFINET[®] IO-Schnittstellenkarte (PX01PN) die Version (Software-Stack) der Karte. Diese ist im Webbrowser im Menü **Feldbus** aufgeführt.

Verwenden Sie je nach Software-Stack und Firmware im PMX die passende GSDML-Datei wie in der Tabelle unten aufgeführt.

PMX Firmware	PROFINET® IO Stack 3.4.15	PROFINET® IO Stack 3.5.49
2.0 mit SPS-Kanälen	GSDML-V2.25-HBM-PMX-P LC-V3.4-20141216.xml	GSDML-V2.3-HBM-PMX_IRT -PLC-20141215.xml
PROFINET application V2.2.0	Hinweis: Verwenden Sie den "Create GSDML File"-Button	Hinweis: Verwenden Sie den "Create GSDML File"-Button
1.46 ohne SPS-Kanäle	GSDML-V2.25-HBM-PMX-2 0121025.xml (nur RT)	GSDML-V2.25-HBM-PMX-2 0121025.xml (nur RT)
PROFINET® IO appli- cation V2.1.0	GSDML-V2.25-HBM-PMX_IR T-20130404.xml (RT und IRT)	GSDML-V2.3-HBM-PMX-IRT -noPLC -20141216.xml (RT und IRT)
1.44 ohne SPS-Kanäle	GSDML-V2.25-HBM-PMX-2 0121025.xml (nur RT)	Nicht unterstützt
PROFINET® IO appli- cation V1.0.0	GSDML-V2.25-HBM-PMX_IR T-20130404.xml (RT und IRT)	

Erzeugen einer fixen Gerätebeschreibungsdatei (ab Firmware 2.00)

Durch Klick auf die Schaltfläche **Create** ... **File** wird wird eine Gerätebeschreibungsdatei erzeugt, die exakt zu dem verwendeten PMX mit seinen Einschubkarten und zu übertragenden Berechnungskanälen passt. Eine manuelle Anpassung in der Konfigurationssoftware der Steuerung entfällt damit.


Die Datei kann beliebig oft erzeugt werden. Der Dateiname enthält "... generated ...". Eine bereits existierende Datei mit dem gleichen Namen wird überschrieben.

Die Karten-Typen PX878 und PX02 (Leerslot) erscheinen nicht in der Datei, weil sie keine Feldbus-relevanten Daten liefern.

Wichtig

Vor dem Generieren müssen Sie die Anzahl der zu übertragenden berechneten Kanäle auswählen.

Ablage im Gerät

Die Datei wird im öffentlichen Gerätespeicher abgelegt. Dort kann sie heruntergeladen oder gelöscht werden. Der Zugang erfolgt über das Menü Einstellungen -> System -> Gerät -> Gerätespeicher -> Gerätespeicher anzeigen.

Ordner: public/PROFINET bzw. public/EtherCAT oder public/EtherNet_IP.

Der Ordner kann auch im Webbrowser angezeigt werden. Geben Sie dazu in die Adresszeile ein:

http://<PMX-Name>/public/PROFINET/ oder http://<PMX-Name>/public/EtherCAT/ oder

http://<PMX-Name>/public/EtherNet_IP/

Wobei <PMX-Name> der PMX-Netzwerkname ist. Beachten Sie die Groß- und Kleinschreibung!

Ale alternative Schreibweise können Sie die IP-Adresse verwenden, z. B.:

http://172.19.201.184/public/PROFINET/

Ausnahmen

Die Datei wird aus einer in public/PROFINET oder public/EtherCAT oder public/Ether-Net_IP liegenden Vorlage-Datei erstellt. Falls diese Datei nicht gefunden wird, erscheint eine Fehlermeldung "Cannot open source file".

Ein Firmware-Update (auch mit der gleichen Versionsnummer wie die installierte Firmware) stellt die Vorlagen-Datei wieder her.

Wenn weder eine Messkarte installiert ist, noch berechnete Kanäle übertragen werden, ist die erzeugte Datei keine gültige Datei und wird von PROFINET® IO-Konfiguratoren bzw. EtherCAT® oder EtherNet/IP™ nicht akzeptiert.

16.2 Einstellen der Übertragungsgeschwindigkeit des Feldbusses

Sie können die Übertragungsgeschwindigkeit des Feldbusses festlegen.

In der Übersicht rechts oben den Benutzer-Level auf Administrator stellen.

Im Menü Einstellungen -> System -> Gerät -> System Optionen: Interne Datentransferrate auf den gewünschten Wert stellen.

Die Feldbus-Aktualisierungsrate folgt diesem Wert bis zum Feldbus-spezifischen Maximum. Die Änderung ist sofort wirksam.

16.3 Datenübertragung über Feldbus

Pro Messwert werden für den Feldbus (EtherCAT®, PROFINET® oder EtherNet/IP™) 6 Byte benötigt. Dies sind 4 Byte Daten + 1 Byte Steuerwort + 1 Byte Status.

Als Formel für die Datenmenge gilt:

46 Byte Grundlast + 6 Byte * Anzahl der Mess- und Berechnungskanäle.

16.4 Eingangsdaten PMX -> Steuerung (SPS)

16.4.1 Gerätedaten (zyklisch)

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Datentyp
System-Sta- tus	siehe Tabelle "Systemstatus" in Abschnitt 16.4.2	6000.1	0.2 bytes 0 3	uint32
Parametersatz	aktuell aktiver Parametersatz	6000.2	0.2 bytes 4 7	int32
GUI-Status	Antwort Objekt- verzeichnis	6000.3	0.2 bytes 8 15	uint64
Grenzwert- schalter-Sta- tus	Bit x = 1: Grenz- wertschalter x gesetzt	6000.4	0.2 bytes 16 19	uint32

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Datentyp
Grenzwert- Reset- Quittung	Quittierung von "Grenzwertschalter- Reset- Anforderung"; Quittung gleich Anforderung bedeu- tet: Reset wurde durchgeführt	6000.5	0.2 bytes 20 21	uint16
Zeitstempel	PMX-Zeitstempel, zählt mit 153,6 kHz	6000.6	0.2 bytes 22 29	uint64
Digitale Ausgänge	aktueller Status	6000.7	0.2 bytes 30 33	uint32

16.4.2 Systemstatus

Bit	Funktion	
0	Fehler in Werkseinstellungen	
1	Gerät ist Sync-Master	auch gesetzt bei Einzelplatzgerät
2	Sync-Fehler	keine oder gestörte Verbindung
3	Sync-Fehler	keine Synchronisierung möglich
4	Heartbeat	Bit schaltet mit ca. 1 Hz
5	Speisung Überlast	Überstrom durch externe Ver- braucher (Aufnehmerspeisung)
6	catman® interface buffer overrun	Fehler in Datenübertragung, Datenverlust
7	Device not ready	Gerät arbeitet und liefert keine gültigen Messwerte
8	Calculated Channels Overrun	Rechenzeit-Überschreitung in den berechneten Kanälen

16.4.3 Messwerte (zyklisch)

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
Flags	Status-Flags aus berechneten Kanälen	6001.1	0.3 bytes 0 3	uint32
Flags Status (reserviert für zukünftige Benutzung)	immer 0	6001.2	0.3 byte 4	uint8
Flags Steuerwort-Quittun g (reserviert für zukünftige Benutzung)	Rückgabe des 'Steuerwort Flags' 7001.1	6001.3	0.3 byte 5	uint8
Digitale Inputs	Pegel der digi- talen Inputs	6002.1	0.4 bytes 0 3	uint32
Digitale Inputs Status (reserviert für zukünftige Benutzung)	immer 0	6002.2	0.4 byte 4	uint8
Digitale Inputs Steuerwort- Quittung (reserviert für zukünftige Benutzung)	Rückgabe des 'Steuerworts digi- tale Inputs'	6002.3	0.4 byte 5	uint8
Messwert Slot x.y		60xy.1	x.y bytes 0 3	float32
Messwert Status	siehe Tabelle 'Messwertstatus' in Abschnitt 16.4.4	60xy.2	x.y byte 4	uint8
Messwert Steuerwort-Quittun g (bestätigt die Bearbeitung des Steuerwortes)	Rückgabe Steuerwort 70xy.2	60xy.3	x.y byte 5	uint8
	Anzahl je nach gesteckten Mess- karten			

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
Berechneter Kanal in Slot 9.z		60xy.1	9.z bytes 0 3	float32
Status	siehe Tabelle 'Messwert-Status Kapitel 16.4.4'	60xy.2	9.z byte 4	uint8
Steuerwort-Quittun g (bestätigt die Bearbeitung des Steuerwortes)	Rückgabe Steuerwort	60xy.3	9. byte 5	uint8
-	Anzahl je nach am Feldbus ein- gestellte Zahl berechneter Kanäle			

Anmerkung zu berechneten Kanälen

Im PMX sind berechnete Kanäle dem virtuellen Slot 9 zugeordnet. In den Ether-CAT®-Indizes kann die dritte Stelle aus technischen Gründen nicht 9 sein. Die berechneten Kanäle erscheinen daher in den Indizes 6051 bis 60b4.

16.4.4 Messwertstatus

Bit	Funktion	
0	Werkskalibrierung ungültig	-
1	Messwert ungültig	Überlauf, Unterlauf, Sensor defekt, Kalibrierung läuft
2	Autokalibrierung läuft	Messkanal mit automatischer Kalibrierung (Messbrücken)
3	TEDS Fehler	-
4	Testsignal	Der Messwert wird durch ein Test- signal übersteuert (Verstärkerdialog). Dies ist kein Fehlerzustand, sondern eine Information

Tipp

Wenn bei allen Bits der Kanalstatus 0 ist, ist der Messwert OK.

16.5 Ausgangsdaten Steuerung (SPS) ⇒ PMX

16.5.1 Gerätedaten (zyklisch)

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
Geräte- Steuerwort	Bit0: LEDs blinken für 30s Bit1 (Wert 0x02): Enable Objekt-Verzeich- nis-Server Bit2 (Wert 0x04): Parameter speichern (gleiche Funktion wie Diskettensymbol auf der Weboberflä- che), Flankengetriggert von 0 -> 1	7000.1	0.2 bytes 03	uint32
Parametersatz Anforderung	Bereich 0 999	7000.2	0.2 bytes 4 7	uint32
GUI- Signalisierung	Komando Objekt- verzeichnis	7000.3	0.2 bytes 8 15	uint64
Grenzwert- schalter-Reset- Anforderung	Bit x = 1: Ausgang von Grenzwert- schalter x wird zurückgesetzt (x = 0 15)	7000.4	0.2 bytes 16 17	uint16
Grenzwert- schalter- Enable (ein Bit muss "1" sein, damit der entspre- chende Grenzwert über den Feldbus geändert werden kann)	Bit x = 1: Grenzwert- schalter x wird über Feldbus definiert (x = 0 15)	7000.5	0.2 bytes 18 19	uint16
Grenzwert 0	Grenzwert Nr. 0	7000.6	0.2 bytes 20 23	float32

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
Grenzwert 15	Grenzwert Nr. 15	7000.21	0.2 bytes 80 83	float32
Digitale Aus- gänge	Setzen der digitalen Ausgänge: Digitalausgang x = Bit x (die Zuordnung dieses gesetzten Bits zu einem Digitalausgang auf einer PX878 erfolgt über das Menü Digital- ausgang)	7000.22	0.2 bytes 84 87	uint32
Digitale Eingänge	Die Bits 16 31 der Digitalausgänge werden außerdem als "Digitale Ein- gänge 17 32" in die berechneten Kanäle übertragen. Damit können Sie Funktionsblöcke steuern.			

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
SPS-Kanal1 (ab Firmware 2.00)	Frei verwendbar	7002.1	0.2 bytes 88 91	float32
SPS-Kanal2 (ab Firmware 2.00)	Frei verwendbar	7002.2	0.2 bytes 92 95	float32
SPS-Kanal3 (ab Firmware 2.00)	Frei verwendbar	7002.3	0.2 bytes 96 99	float32
SPS-Kanal4 (ab Firmware 2.00)	Frei verwendbar	7002.4	0.2 bytes 100 103	float32
SPS-Kanal5 (ab Firmware 2.00)	Frei verwendbar	7002.5	0.2 bytes 104 107	float32
SPS-Kanal6 (ab Firmware 2.00)	Frei verwendbar	7002.6	0.2 bytes 108 111	float32
SPS-Kanal7 (ab Firmware 2.00)	Frei verwendbar	7002.7	0.2 bytes 112 115	float32
SPS-Kanal8 (ab Firmware 2.00)	Frei verwendbar	7002.8	0.2 bytes 116 119	float32

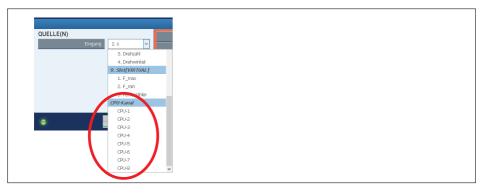
16.5.2 Messwert-Steuerworte (zyklisch)

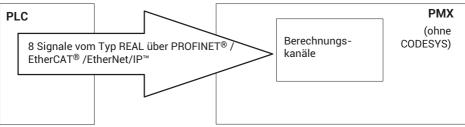
Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
Steuerwort Flags	Reserviert für zukünf- tige Bearbeitung	7006.1	0.3	uint8
Steuerwort digitale Inputs	Reserviert für zukünf- tige Bearbeitung	7006.2	0.4	uint8
Steuerwort für Messwert Slot x.y	Funktion siehe Abschnitt 16.5.3	70xy.1	x.y	uint8
	Anzahl der Steuerwörter je nach gesteckten Messkarten. Ein Steuerwort pro Messkanal.			

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
Steuerwort für berechneten Kanal Slot 9.z	Funktion siehe Abschnitt 16.5.3	70xy.1	9.z	uint8
	Anzahl der Steuerwörter je nach gesteckten Messkarten. Ein Steuerwort pro berechnetem Kanal.			

Wichtig

Anmerkung zu berechneten Kanälen:


Im Gerät PMX sind berechnete Kanäle dem virtuellen Slot 9 zugeordnet. In den Ether-CAT®-Indizes kann die dritte Stelle aus technischen Gründen nicht 9 sein. Die berechneten Kanäle erscheinen zur Zeit in den Indizes 7051 bis 70b4.


16.5.3 Messwert-Steuerworte

Bit	Funktion	Reagiert auf	Anwendbar auf
0	Nullsetzen	Flanke 0 -> 1	Messkanal
1	Offset = 0	Flanke 0 -> 1	Messkanal
2	Reset von Max., Min. oder Spitze-Spitze- Werten	Flanke 0 -> 1	Extremwertkanal (berechneter Kanal in Slot 9)
3	Halten	Pegel = 1	Extremwertkanal (berechneter Kanal in Slot 9)
4	Rekalibrieren	Flanke 0 -> 1	Messkanal mit automatischer Kalibrierung (Messbrücken), betrifft nur PX455
5	Shunt	Flanke	PX460 Kanäle 2 und 4

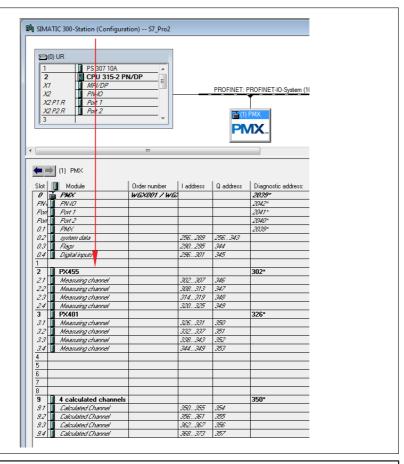
16.5.4 Feldbuskanäle (CPU-Kanäle)

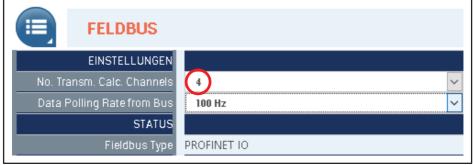
Von einer Steuerung (SPS) können bis zu 8 Signale über Feldbus (Industrial Ethernet) in das PMX als CPU-Kanäle eingespeist werden. Dort stehen sie dann in den Berechnungskanälen zur weiteren Verarbeitung zur Verfügung. Diese Funktion steht im PMX ab Firmware 2.00 für PROFINET®, EtherCAT® und EtherNet/IP™ zu Verfügung.



Wichtig

Geht nicht in Geräten mit CODESYS (Grundgerät WGX001), nur in Geräten mit WGX002. Die Verarbeitungsgeschwindigkeit für die Signalübertragung der Feldbuskanäle von einer SPS in das PMX stellen Sie mit der "Data Polling Rate from Bus" ein. Wenn die Signale im PMX vorliegen, werden sie mit der Standard-Verarbeitungrate von 19200/s bzw.38460/s weiterverarbeitet.


16.6 PROFINET® IO


Netzwerkeinstellungen
 Die PROFINET®-bezogenen Netzwerkeinstellungen (IP-Adresse, Gerätename, ...)
 werden über das PROFINET®-Konfigurationstool eingestellt und über die PROFI-

- NET®-Leitung gesetzt. Im Dialog **Feldbus** der PMX-Benutzeroberfläche können Sie diese Daten zur Kontrolle lesen und ab PMX-Firmware 3.0 auch setzen.
- Die PROFINET®-Konfiguration muss mit den montierten PMX-Karten übereinstimmen.
- In der Master-Konfiguration bei IRT-Betrieb muss die Kabellänge eingetragen werden, da es sonst bei langen Kabeln zu Übertragungsfehlern kommen kann.

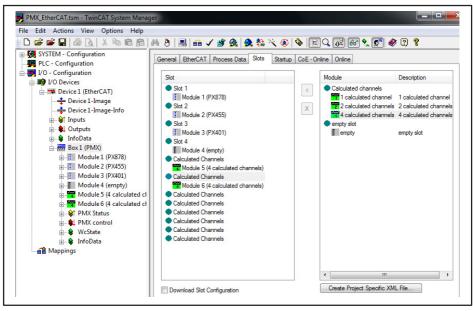
Beispiel

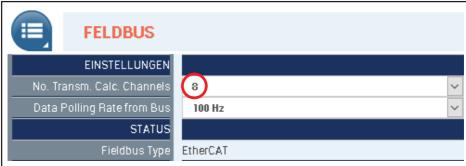
	Slot 1	Slot 2	Slot 3	Slot 4	Slot 9 (virtuell)
Im PMX montiert	PX878	PX455	PX401	leer	berechnete Kanäle
PROFINET®- Konfiguration	Keine Daten für PROFINET®. Diesen Slot leer lassen, siehe unten.	PX455	PX401	leer	Anzahl berechneter Kanäle, muss mit PMX-Einstellung (Menü Feldbus) übereinstimmen.

Beispiele zur Konfiguration und Betrieb des PMX über Feldbusse finden Sie auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

16.7 EtherCAT®

Die Konfiguration im EtherCAT®-Master muss mit den montierten Karten übereinstimmen.


Berechnete Kanäle


Die Anzahl muss mit der PMX-Einstellung (Menü Feldbus) übereinstimmen.

Die berechneten Kanäle werden im Ether CAT^{\otimes} -Master auf virtuelle Slots "Berechnete Kanäle" / "Calculated Channels" verteilt.

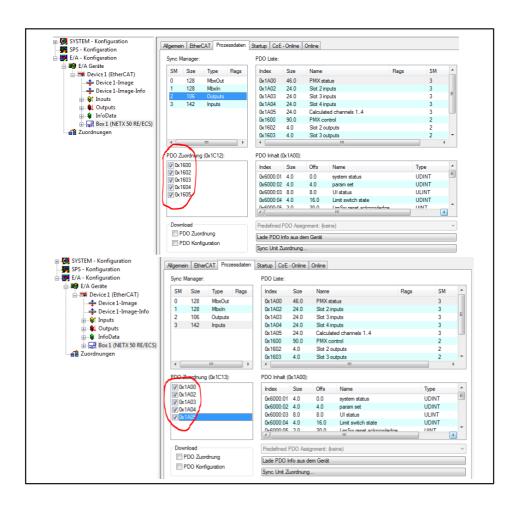
Die Verteilung auf die Slots spielt keine Rolle, aber die Gesamtzahl der Kanäle muss stimmen.

Beispiel mit acht berechneten Kanälen:

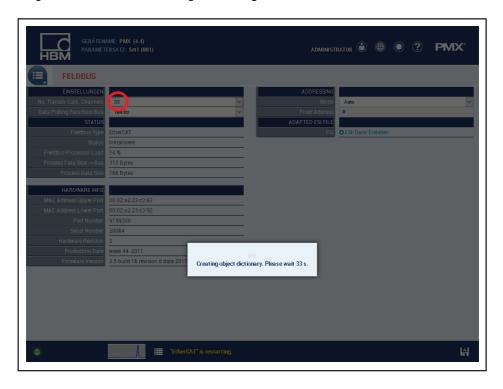
16.8 Benutzung des PMX CoE Object Dictionary

CoE steht für CAN over EtherCAT®.

Damit steht eine große Vielfalt von CANopen™-Geräten- und Applikationsprofilen für Geräteklassen und Anwendungen zur Verfügung: Angefangen von den E/A-Baugruppen über Antriebe (z. B. Antriebsprofil CiA 402 genormt als IEC 61800-7-201/301), Encoder (CiA 406), Proportionalventile und Hydraulikregler (CiA 408), bis hin zu Anwendungsprofilen.

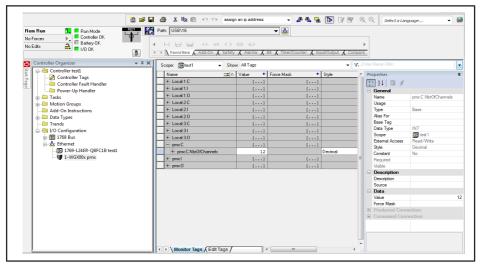

Das Vorgehen mit TwinCAT

- Löschen Sie vor dem TwinCAT-Start die PMX-ESI-Datei aus dem TwinCAT-Ordner (Default C:\TwinCAT\lo\EtherCAT).
 Alternativ können Sie auch die Endung .xml ändern, z. B. in "HBM_PMX .xml.doNotUseYet".
- Mit dem Gerätescan findet TwinCAT das PMX.
 Das PMX unterstützt keine teilweise PDO-Selektion.



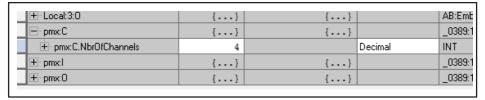
Wichtig

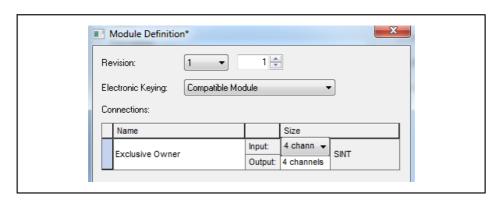
Sie müssen alle PDOs manuell auswählen, sonst stimmen die Sync-Manager-Größen nicht (es ist leider nicht möglich, die PDOs als Fixed und Mandatory zu parametrieren).


- 3. Das weitere Vorgehen ist identisch zu dem mit einer ESI-Datei.
- 4. Falls berechnete Kanäle über EtherCAT® gesendet werden sollen, stellen Sie die gewünschte Anzahl im Dialog **Einstellungen -> Feldbus** ein.

16.9 EtherNet/IP™

16.9.1 Konfiguration


So stellen Sie die Anzahl der übertragenen Messkanäle ein:


 Stellen Sie das Konfigurationsobjekt 199 "NbrOfChannels" (Klasse 4, Instanz 199) ein.

Dies bestimmt die Anzahl der Kanäle, die in den Datenrahmen kopiert werden (Bereich 0 ... 48).

In RSLogix 5000 sieht dies z. B. so aus:

 Wählen Sie die Größen der beiden Baugruppen-Instanzen 100 und 101. Diese Zahl sollte mit "NbrOfChannels" übereinstimmen, Bereich 0 ... 48 in Schritten von 4. In RSLogix 5000 sieht dies z. B. so aus.

Wichtig

Beispiele zur Konfiguration und Betrieb des PMX über Feldbusse finden Sie auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

16.9.2 Kanaleinstellungen

Die eingebauten Messkarten stellen die Signale der Kanäle in der Reihenfolge ihres Einbaus ins PMX-Rack bereit. Die Karte in Slot 1 liefert Daten beginnend bei Kanal 1. Ein leerer Slot beliefert keine Kanäle, nur die EtherNet/IP™- Kanäle sind lückenlos belegt.

Die berechneten Kanäle liefern ihre Daten nach den Kanälen der Messkarten.

Card Type	Channels Use		
PX02 (empty slot)	0		
PX401	4		
PX455	4		
PX460	4		
PX878	0, like an empty slot		
Calculated channel	1		

Beispiel

	Slot 1	Slot 2	Slot 3	Slot 4	Calculated Channels
Card type	PX878	PX401	PX455	empty	none
Channels used	0	4	4	0	3
Channels in EtherNet/IP™	none	Channels 1, 2, 3, 4	Channels 5, 6, 7, 8	none	Channels 9, 10, 11

16.9.3 Datenstruktur

Assembly 100

Von PMX (Adapter) zum Scanner

Index	Size in octets	Туре	Tag	
0 3	4	UDINT	System Status	
4 7	4	DINT	ParameterSet	
8 15	8	ULINT	UiStatus	
16 19	4	UDINT	LimitSwitchState	
20 21	2	UINT	LimitResetAckn	
22 29	8	ULINT	TimeStamp	SystemData
30 33	4	UDINT	DigitalOutputState	(transmitted
34 37	4	UDINT	Flags	always)
38	1	USINT	FlagsStatus	
39	1	USINT	FlagsAcknowledge	
40 43	4	UDINT	DigitalInputsState	
44	1	USINT	DigitalInputsStatus	
45	1	USINT	DigitalInputsAcknowledge	

Die Anzahl der übertragenen Kanaldaten ist abhängig von der Konfiguration, siehe unten.

Index	Size in octets	Туре	Tag		
46 49	4	REAL	MeasValue		
50	1	USINT	MeasStatus	Channel 1	
51	1	USINT	MeasAcknowledge		
52 55	4	REAL	MeasValue		
56	1	USINT	MeasStatus	Channel 2	
57	1	USINT	MeasAcknowledge		
58 61	4	REAL	MeasValue		
62	1	USINT	MeasStatus	Channel 3	
63	1	USINT	MeasAcknowledge		
64 67	4	REAL	MeasValue		
68	1	USINT	MeasStatus	Channel 4	
69	1	USINT	MeasAcknowledge		
70 73	4	REAL	MeasValue		
74	1	USINT	MeasStatus	Channel 5	
75	1	USINT	MeasAcknowledge		
76 79	4	REAL	MeasValue		
80	1	USINT	MeasStatus	Channel 6	
81	1	USINT	MeasAcknowledge		
82 85	4	REAL	MeasValue		
86	1	USINT	MeasStatus	Channel 7	
87	1	USINT	MeasAcknowledge		
88 91	4	REAL	MeasValue		
92	1	USINT	MeasStatus	Channel 8	
93	1	USINT	MeasAcknowledge		
94 97	4	REAL	MeasValue		
98	1	USINT	MeasStatus	Channel 9	
99	1	USINT	MeasAcknowledge]	
100 103	4	REAL	MeasValue		
104	1	USINT	MeasStatus	Channel 10	
105	1	USINT	MeasAcknowledge		

Index	Size in octets	Туре	Tag	
106 109	4	REAL	MeasValue	
110	1	USINT	MeasStatus	Channel 11
111	1	USINT	MeasAcknowledge	
112 115	4	REAL	MeasValue	
116	1	USINT	MeasStatus	Channel 12
117	1	USINT	MeasAcknowledge	
118 121	4	REAL	MeasValue	
122	1	USINT	MeasStatus	Channel 13
123	1	USINT	MeasAcknowledge	
124 127	4	REAL	MeasValue	
128	1	USINT	MeasStatus	Channel 14
129	1	USINT	MeasAcknowledge	1
130 13	4	REAL	MeasValue	
134	1	USINT	MeasStatus	Channel 15
135	1	USINT	MeasAcknowledge	
136 139	4	REAL	MeasValue	Channel 16
140	1	USINT	MeasStatus	
141	1	USINT	MeasAcknowledge	
142 145	4	REAL	MeasValue	Channel 17
146	1	USINT	MeasStatus	
147	1	USINT	MeasAcknowledge	
148 151	4	REAL	MeasValue	Channel 18
152	1	USINT	MeasStatus	
153	1	USINT	MeasAcknowledge	
154 157	4	REAL	MeasValue	Channel 19
158	1	USINT	MeasStatus	
159	1	USINT	MeasAcknowledge	
160 163	4	REAL	MeasValue	
164	1	USINT	MeasStatus	Channel 20
165	1	USINT	MeasAcknowledge	

Index	Size in octets	Туре	Tag	
166 169	4	REAL	MeasValue	
170	1	USINT	MeasStatus	Channel 21
171	1	USINT	MeasAcknowledge	
172 175	4	REAL	MeasValue	
176	1	USINT	MeasStatus	Channel 22
177	1	USINT	MeasAcknowledge	
178 181	4	REAL	MeasValue	
182	1	USINT	MeasStatus	Channel 23
183	1	USINT	MeasAcknowledge	
184 187	4	REAL	MeasValue	
188	1	USINT	MeasStatus	Channel 24
189	1	USINT	MeasAcknowledge	7
190 193	4	REAL	MeasValue	Channel 25
194	1	USINT	MeasStatus	
195	1	USINT	MeasAcknowledge	
196 199	4	REAL	MeasValue	Channel 26
200	1	USINT	MeasStatus	
201	1	USINT	MeasAcknowledge	
202 205	4	REAL	MeasValue	
206	1	USINT	MeasStatus	Channel 27
207	1	USINT	MeasAcknowledge	7
208 211	4	REAL	MeasValue	Channel 28
212	1	USINT	MeasStatus	
213	1	USINT	MeasAcknowledge	
214 217	4	REAL	MeasValue	Channel 29
218	1	USINT	MeasStatus	
219	1	USINT	MeasAcknowledge	
220 223	4	REAL	MeasValue	
224	1	USINT	MeasStatus	Channel 30
225	1	USINT	MeasAcknowledge	

Index	Size in octets	Туре	Tag	
226 229	4	REAL	MeasValue	
230	1	USINT	MeasStatus	Channel 31
231	1	USINT	MeasAcknowledge]
232 235	4	REAL	MeasValue	
236	1	USINT	MeasStatus	Channel 32
237	1	USINT	MeasAcknowledge	
238 241	4	REAL	MeasValue	
242	1	USINT	MeasStatus	Channel 33
243	1	USINT	MeasAcknowledge	
244 247	4	REAL	MeasValue	
248	1	USINT	MeasStatus	Channel 34
249	1	USINT	MeasAcknowledge	1
250 253	4	REAL	MeasValue	Channel 35
254	1	USINT	MeasStatus	
255	1	USINT	MeasAcknowledge	
256 259	4	REAL	MeasValue	Channel 36
260	1	USINT	MeasStatus	
261	1	USINT	MeasAcknowledge	
262 265	4	REAL	MeasValue	
266	1	USINT	MeasStatus	Channel 37
267	1	USINT	MeasAcknowledge	1
268 271	4	REAL	MeasValue	Channel 38
272	1	USINT	MeasStatus	
273	1	USINT	MeasAcknowledge	
274 277	4	REAL	MeasValue	Channel 39
278	1	USINT	MeasStatus	
279	1	USINT	MeasAcknowledge	
280 283	4	REAL	MeasValue	
284	1	USINT	MeasStatus	Channel 40
285	1	USINT	MeasAcknowledge	

Index	Size in octets	Туре	Tag	
286 289	4	REAL	MeasValue	
290	1	USINT	MeasStatus	Channel 41
291	1	USINT	MeasAcknowledge	
292 295	4	REAL	MeasValue	
296	1	USINT	MeasStatus	Channel 42
297	1	USINT	MeasAcknowledge	
298 301	4	REAL	MeasValue	
302	1	USINT	MeasStatus	Channel 43
303	1	USINT	MeasAcknowledge	
304 307	4	REAL	MeasValue	
308	1	USINT	MeasStatus	Channel 44
309	1	USINT	MeasAcknowledge	
310 313	4	REAL	MeasValue	
314	1	USINT	MeasStatus	Channel 45
315	1	USINT	MeasAcknowledge	
316 319	4	REAL	MeasValue	
320	1	USINT	MeasStatus	Channel 46
321	1	USINT	MeasAcknowledge	
322 325	4	REAL	MeasValue	
326	1	USINT	MeasStatus	Channel 47
327	1	USINT	MeasAcknowledge	
328 331	4	REAL	MeasValue	
332	1	USINT	MeasStatus	Channel 48
333	1	USINT	MeasAcknowledge	

Assembly 101 Vom Scanner zum PMX (Adapter)

Index	Size in octets	Туре	Tag	
03	4	UDINT	PMX Control	
47	4	DINT	ParamSetRequest	
815	8	ULINT	UiControl	
1617	2	UINT	LimitSwitchReset	
1819	2	UINT	LimitSwitchEnable	
2023	4	REAL	LimitThresh0	
2427	4	REAL	LimitThresh1	
2831	4	REAL	LimitThresh2	
3235	4	REAL	LimitThresh3	
3639	4	REAL	LimitThresh4	
4043	4	REAL	LimitThresh5	
4447	4	REAL	LimitThresh6	
4851	4	REAL	LimitThresh7	
5255	4	REAL	LimitThresh8	SystemData (transmitted
5659	4	REAL	LimitThresh9	always)
6063	4	REAL	LimitThresh10	, ,
6467	4	REAL	LimitThresh11	
6871	4	REAL	LimitThresh12	
7275	4	REAL	LimitThresh13	
7679	4	REAL	LimitThresh14	
8083	4	REAL	LimitThresh15	
8487	4	UDINT	DigitalOutputSetting (Note *)	
8891	4	REAL	PLC channel 0	
9295	4	REAL	PLC channel 0	
9699	4	REAL	PLC channel 0	
100103	4	REAL	PLC channel 0	
104107	4	REAL	PLC channel 0	
108111	4	REAL	PLC channel 0	

Index	Size in octets	Туре	Tag	
112115	4	REAL	PLC channel 0	
116119	4	REAL	PLC channel 0	
120	1	USINT	FlagsControl	
121	1	USINT	DigInputControl	

Die Anzahl der übertragenen Kanaldaten ist abhängig von der Konfiguration, siehe unten.

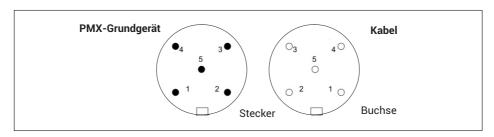
*) Note

Index	DigitalOutputSetting bits	are mapped to Digital Inputs (in the calculated channels)
86 bits 0 7	1623	1724
87 bits 0 7	2431	2532

Index	Size in octets	Туре	Tag	
122	1	USINT	MeasControl	Channel 1
123	1	USINT	MeasControl	Channel 2
124	1	USINT	MeasControl	Channel 3
125	1	USINT	MeasControl	Channel 4
126	1	USINT	MeasControl	Channel 5
127	1	USINT	MeasControl	Channel 6
128	1	USINT	MeasControl	Channel 7
129	1	USINT	MeasControl	Channel 8
130	1	USINT	MeasControl	Channel 9
131	1	USINT	MeasControl	Channel 10
132	1	USINT	MeasControl	Channel 11
133	1	USINT	MeasControl	Channel 12
134	1	USINT	MeasControl	Channel 13
135	1	USINT	MeasControl	Channel 14
136	1	USINT	MeasControl	Channel 15
137	1	USINT	MeasControl	Channel 16
138	1	USINT	MeasControl	Channel 17
139	1	USINT	MeasControl	Channel 18

Index	Size in octets	Туре	Tag	
140	1	USINT	MeasControl	Channel 19
141	1	USINT	MeasControl	Channel 20
142	1	USINT	MeasControl	Channel 21
143	1	USINT	MeasControl	Channel 22
144	1	USINT	MeasControl	Channel 23
145	1	USINT	MeasControl	Channel 24
146	1	USINT	MeasControl	Channel 25
147	1	USINT	MeasControl	Channel 26
148	1	USINT	MeasControl	Channel 27
149	1	USINT	MeasControl	Channel 28
150	1	USINT	MeasControl	Channel 29
151	1	USINT	MeasControl	Channel 30
152	1	USINT	MeasControl	Channel 31
153	1	USINT	MeasControl	Channel 32
154	1	USINT	MeasControl	Channel 33
155	1	USINT	MeasControl	Channel 34
156	1	USINT	MeasControl	Channel 35
157	1	USINT	MeasControl	Channel 36
158	1	USINT	MeasControl	Channel 37
159	1	USINT	MeasControl	Channel 38
160	1	USINT	MeasControl	Channel 39
161	1	USINT	MeasControl	Channel 40
162	1	USINT	MeasControl	Channel 41
163	1	USINT	MeasControl	Channel 42
164	1	USINT	MeasControl	Channel 43
165	1	USINT	MeasControl	Channel 44
166	1	USINT	MeasControl	Channel 45
167	1	USINT	MeasControl	Channel 46
168	1	USINT	MeasControl	Channel 47
169	1	USINT	MeasControl	Channel 48

17 CAN-SCHNITTSTELLE (NUR WGX001)


17.1 Allgemein

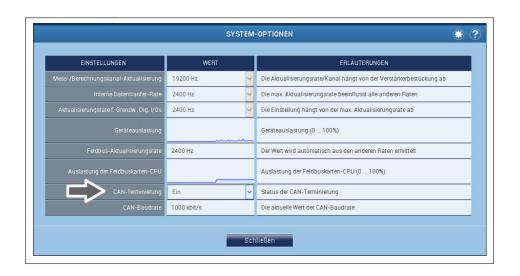
Das Grundgerät WGX001 verfügt über eine CAN-Schnittstelle nach ISO11898. In Verbindung mit der CODESYS Soft-SPS können Sie das PMX als CANopen Slave oder CA-Nopen Master betreiben. Fügen Sie dazu in CODESYS eine CAN-Komponente und einen CANopen-Stack hinzu. Das dazugehörige PMX-Package und eine Sammlung von Beispielprogrammen zur Code-Generierung, Web-Visualisierung und Einbindung von CANopen-Modulen sind ebenfalls inklusive.

Laden Sie die Dateien bei HBM herunter:

https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

17.2 CAN-Anschlussbelegung

Pin	Signal	Beschreibung	
1	SHLD	CAN-Schirmung	
2		nicht benutzt	
3	GND	Masse	
4	CAN_H	CAN_H Datenleitung (high)	
5	CAN_L	CAN_L Datenleitung (low)	



Wichtig

Die Versorgung der Teilnehmer im CAN-Netzwerk muss separat erfolgen und nicht über den CAN-Anschluss (Buchse M12) des PMX.

Die Terminierung des Busses erfolgt über einen 120 Ohm Abschlusswiderstand an jedem Ende.

Im PMX ist der Abschlusswiderstand integriert. Aktivieren Sie ihn über das Menü Einstellungen -> System -> Gerät -> System-Optionen -> CAN-Terminierung.

17.3 CANopen Master/Slave-Betrieb

Masterbetrieb

Bei der Datenübertragung über CAN-Bus werden keine Teilnehmer direkt adressiert. Ein eindeutiger Identifier kennzeichnet den Inhalt einer Nachricht (z. B. Presskraft oder Pressweg).

Der Identifier steht auch für die Priorität der Nachricht. Nachricht = Identifier + Signal + Zusatzinformation des Teilnehmers am Bus = Knoten.

Im Masterbetrieb können Sie über die CODESYS-Programmierumgebung CAN-Module wie digiCLIP, PME, SomatXR oder Fremdgeräte einbinden.

Die Einbindung erfolgt über die Gerätebeschreibungsdateien (EDS oder DCF) der CAN-Module.

Die Busgeschwindigkeit aller CAN-Module (CAN-Baudrate) muss gleich sein und ist durch die Länge des Busses limitiert. Die Übertragungsrate kann in der CODESYS-Programmierumgebung zwischen 100 kBit und 1 MBit eingestellt werden und wird im PMX-Webbrowser-Menü **System-Optionen** angezeigt.

Kontaktieren Sie gegebenenfalls die Lieferanten der CAN-Module bezüglich der Einstellung der Busgeschwindigkeit.

Slavebetrieb

Im Slavebetrieb kann das PMX SDOs und PDOs aller Messkanäle und Berechnungskanäle senden. Es stehen max. 128 PDO-Streams mit insgesamt maximal 128 Byte Datengröße und max. 199 SDO*255 subIDs zur Verfügung. Die PDO-Streams können Timergesteuert bis min 300 Hz oder Messwertgesteuert bis 1,2 kHz oder via SYNC-Nachricht getriggert gesendet werden.

Die SDOs und PDOs legen Sie in der CODESYS-Programmierumgebung an. Die Übertragungsrate kann in der CODESYS Programmierumgebung zwischen 100 kBit und 1 MBit eingestellt werden und wird im PMX-Webbrowser im Menü **System-Optionen** angezeigt.

Damit stehen Ihnen mehrere SDO-Kanäle und modulabhängiges PDO-Mapping sowie CAN Low-Level-Bibliotheken zur Verfügung.

Max. 30 CAN-Nachrichten können wiederum über den PMX-Berechnungskanal "Verbindung mit (CODESYS)" im PMX als Messwert zur Verfügung gestellt werden und werden dort sofort beim Eingang "zeitgestempelt".

Damit ist im Gesamtsystem eine parallele und synchrone Erfassung und Auswertung von direkt gemessenen Messgrößen und CAN-Nachrichten möglich.

Der CAN-Bus muss beidseitig terminiert und die passende Baudrate aller Busteilnehmer eingestellt sein.

Fehler beim Betrieb des CAN-Busses werden nicht signalisiert oder gespeichert.

18 CODESYS-V3-SOFT-SPS (NUR WGX001)

18.1 Allgemein

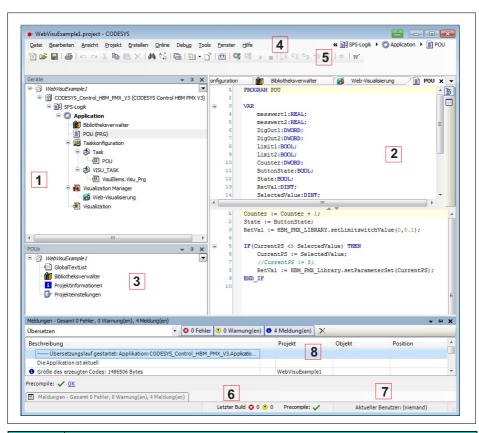
Das Grundgehäuse WGX001 ermöglicht mit der Software-Plattform CODESYS V3 des PMX Lösungen für viele Aufgabenstellungen in der industriellen Automatisierungstechnik. Darin ist alles enthalten, was Sie zur Programmierung, Feldbus- und E/A-Konfiguration, Visualisierung, MotionControl und für weitere Aufgaben benötigen. Basis der CODESYS V3 Software-Plattform ist das IEC 61131-3 Programmiersystem. Alle Programmiersprachen der IEC-61131-3 werden unterstützt.

Bei PMX mit CODESYS V3 können Anwendung nicht nur automatisiert, sondern gleichzeitig in Echtzeit angezeigt und bedient werden. Die passende Web-Visualisierung erstellen Sie in der CODESYS-Software. Sie wird zusammen mit der Applikation im PMX ausgeführt. Über die Ethernet-TCP/IP-Schnittstelle des Verstärkers können Sie die Visualisierung auf allen browserbasierten Geräten oder im Browser des PCs nutzen.

Eine CODESYS-Runtime-Lizenz ist bereits im PMX mit dem Grundgerät WGX001 enthalten. Über die mitgelieferte PMX-CODESYS-CD erhalten Sie die CODESYS-Software V3 und das dazugehörige PMX-Package. Eine Sammlung von Beispielprogrammen zur Code-Generierung, Web-Visualisierung und Einbindung von CANopen-Modulen ist ebenfalls inklusive.

Die Dateien sind frei erhältlich bei HBM: https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

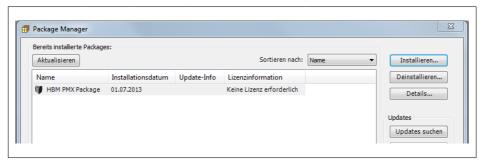
Wichtig


Läuft auf dem PMX eine CODESYS-Anwendung oder eine CODESYS WebVisualisierung, so bleiben diese auch nach einem Kartentausch oder einer Firmwareaktualisierung (ab V2.00) erhalten. Bitte beachten Sie, dass alle Signale für CODESYS fest zugeordnet sind und bei einem Versetzen der Messkarten überprüft und ggf. korrigiert werden müssen.

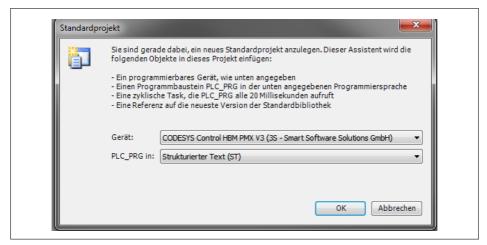
Eine laufende Anwendung kann direkt in der CODESYS-Entwicklungsumgebung gestoppt werden. Ab Firmware V3.00 können Sie CODESYS-Anwendungen und Visualisierungen im Menü CODESYS einzeln starten, stoppen, zurücksetzen und auch löschen.

Zusätzlich können Sie CODESYS-Projekte, die Sie über die CODESYS-Entwicklungsumgebung auf ein PMX übertragen haben, über dieses Menü auf PC geladen und gesichert werden.

18.2 CODESYS-Entwicklungsumgebung

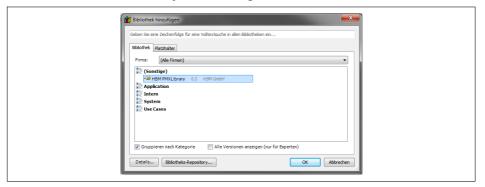

Die Benutzeroberfläche stellt Menüs und Symbolleisten bereit, Fenster für Editor-Ansichten, Objektorganisation, Überwachung und Meldungsausgabe, sowie eine Informations- und Statuszeile.

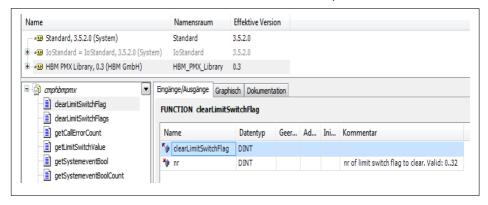
Nr	Bedeutung	
1	Geräte-Fenster	
2	Editor-Fenster	
3	POU-Fenster (programmierbare Organisationseinheit)	
4	Menüleiste	
5	Symbolleiste	
6	Info Position Editor	
7	Info aktueller Benutzer	
8	Meldungsfenster	


18.3 Vorbereitung

- Installieren Sie "Setup_CODESYS...exe"
- Starten Sie CODESYS mit Administrator-Rechten. Dazu z. B. mit der rechten Maustaste und gehaltener Umschalttaste auf das Symbol klicken und Als Administrator ausführen wählen.
- Das PMX-Package installieren: Suchen Sie im Menü Tools -> Package Manager -> Install0 die Datei "hbm-pmx.package" und wählen Sie sie aus.
- Wählen Sie Typische Installation. Der Package Manager enthält jetzt das PMX-Package:

18.4 Projekt anlegen


Datei -> Neues Projekt -> Standardprojekt wählen.
Wählen Sie als Gerätetyp "CODESYS Control HBM PMX V3":


- Doppelklicken Sie auf CODESYS Control HBM PMX V3 nach Anlegen des Projekts. Fügen Sie in den Kommunikationseinstellungen gegebenfalls ein Gateway hinzu. (Der Gateway-Typ ist in der Regel "TCP/IP", wenn das PMX über Ethernet mit dem PC verbunden ist. IP-Adresse ist "localhost" oder verwenden Sie eine feste Geräteadresse oder den PMX-Gerätenamen.)
- Markieren Sie den Gateway-Eintrag und klicken Sie auf Netzwerk durchsuchen. Das Zielgerät sollte nun angezeigt werden. Machen Sie es mit einem Doppelklick zum aktiven Gerät.
- ▶ Unter PLC_PRG (PRG) können Sie jetzt das Programm erstellen.

18.5 PMX-Bibliothek hinzufügen

Doppelklicken Sie auf Bibliotheksverwalter, dann auf Bibliothek hinzufügen und wählen Sie HBM PMXLibrary unter Sonstige.

Die Bibliotheks-Funktionen sind in der Online-Hilfe erläutert, z. B.

18.6 PMX-Bibliothek

Beschreibung der Funktionen der PMX-Referenz-Bibliothek, Version 0.94.

Function: clearLimitSwitchFlag

Löscht ein Grenzwertschalter-Flag

Name	Datentyp	Kommentar
clearLimitSwitchFlag	DINT	
nr	DINT	No of limit switch flag to clear. Valid: 0 32

Function: clearLimitSwitchFlags

Löscht mehrere Grenzwertschalter

Name	Datentyp	Kommentar
clearLimitSwitchFlags	DINT	
mask		Bitmask: every limit switch flag is cleared where corresponding bit is set

Function: diskfree

Gibt den verfügbaren Speicherplatz zurück.

Name	Datentyp	Kommentar
diskfree	UDINT	Worst case estimate in bytes
disk	DINT	Disk number 0: user storage, 1 9: partition on usb-stick, 10 system partition

Function: GetCallErrorCount

Gibt die Anzahl der Fehler zurück, die bei Funktionsaufrufen auftraten, die einen Aufruf-Handle zurückgeben. Diese Funktion sollte im Normalbetrieb immer null zurückgeben.

Name	Datentyp	Kommentar
getCallErrorCount	DINT	

Function: GetLimitSwitchValue

Gibt den Pegel für den Grenzwertschalter zurück. Dies ist der Wert, bei dem das Grenzwertschalter-Flag gesetzt wird.

Name	Datentyp	Kommentar
getLimitSwitchValue	REAL	Value of the limit switch
nr	DINT	Nr of the limit switch starting with 0

Function: GetShuntState

Gibt den Wert der Shunt-Abfrage zurück, die mit startGetShuntState gestartet wurde.

Name	Datentyp	Kommentar
getShuntState	DINT	0: shunt off, 1: shunt on, -1: error, -2: result not available, retry later
callHandle	DINT	The handle returned by startGetShuntState

Function: GetSystemeventBool

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "BOOL" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventBool	BOOL	Value of the corresponding systemevent argument, false if invalid.
idx	DINT	Index value of the n-th bool of the systemevent. Possible values: $0 \le idx < 5$ and $idx < getSystemeventBoolCount()>.$

Function: GetSystemeventBoolCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "BOOL" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
Get Systemevent- BoolCount	BYTE	

Function: GetSystemeventByte

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "BYTE" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
Get SystemeventByte	BYTE	
idx	DINT	Index value of the n-th Byte of the systemevent. Possible values: 0 ≤ idx < 5 and idx <getsystemeventbytecount()></getsystemeventbytecount()>

Function: GetSystemeventByteCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "BYTE" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventByteCount	DINT	

Function: GetSystemeventDInt

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSyste-

meventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "DINT" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventDint	DINT	
		Index value of the n-th DINT of the systemevent. Possible values: $0 \le idx < 5$ and $idx < getSystemeventDIntCount()>.$

Function: GetSystemeventDIntCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "DINT" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
clearLimitSwitchFlag		

Function getSystemeventInt

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "INT" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventInt	INT	
idx	DINT	Index value of the n-th Int of the systemevent. Possible values: $0 \le idx < 5$ and $idx < getSystemeventIntCount()>.$

Function getSystemeventIntCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "INT" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventInt- Count	DINT	

Function: GetSystemeventLInt

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "LINT" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventInt	INT	
idx	DINT	Index value of the n-th Int of the systemevent. Possible values: $0 \le idx < 5$ and $idx < getSystemeventIntCount()>.$

Function: GetSystemeventLIntCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "LINT" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventInt- Count	DINT	

Function: GetSystemeventLReal

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "REAL" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventLReal	LREAL	Value of the corresponding byte, 0 if invalid
idx	DINT	Index value of the n-th Real of the systemevent. Possible values: 0 ≤ idx < 5 and idx <getsystemeventrealcount()>.</getsystemeventrealcount()>

Function: GetSystemeventLRealCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "REAL" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventLReal- Count	DINT	

Function: GetSystemeventNr

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Diese Funktion gibt die Systemereignisnummer für das betreffende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventNr	DINT	

Function: GetSystemeventString

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "STRING" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventString	STRING	
idx	DINT	Index value of the n-th String of the systemevent. Possible values: 0 ≤ idx < 5 and idx <getsystemeventstringcount()>.</getsystemeventstringcount()>

Function: GetSystemeventStringCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "STRING" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemevent- StringCount	DINT	

Function: GetSystemeventUDInt

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "UDINT" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventUDint	UDINT	
idx	DINT	Index value of the n-th UDint of the systemevent. Possible values: $0 \le idx < 5$ and $idx < getSystemeventUDIntCount()>.$

Function: GetSystemeventUDIntCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "UDINT" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventU- DintCount	DINT	

Function: GetSystemeventUInt

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "UINT" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventUInt	UINT	
idx	DINT	Index value of the n-th Ulint of the systemevent. Possible values: $0 \le idx < 5$ and $idx < getSystemeventUIntCount()>.$

Function: GetSystemeventUIntCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "UINT" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventUInt- Count	DINT	

Function: GetSystemeventULInt

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSyste-

meventNr" bestimmten Signaltyp abhängig. Diese Funktion gibt das n-te-Argument des Typs "ULINT" für das entsprechende Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeventULint	ULINT	
idx	DINT	Index value of the n-th ULint of the systemevent. Possible values: $0 \le idx < 5$ and $idx < getSystemeventUIntCount()>.$

Function: GetSystemeventULIntCount

Diese Funktion ist nur gültig, wenn Aufgabe -> Externes Ereignis -> Systemereignis ausgewählt wurde. Die Anzahl der Argumente ist von dem über die Funktion "getSystemeventNr" bestimmten Signaltyp abhängig.

Diese Funktion gibt die verfügbare Anzahl Argumente des Typs "ULINT" für das aktuelle Systemereignis zurück. Zu jedem PMX-Gerät gehört eine xml-Datei, in der die gültigen Systemereignisse beschrieben sind, die Sie vom Gerät über http://pmx/data/systemevent.xml abrufen können.

Name	Datentyp	Kommentar
getSystemeven- tULintCount	DINT	

Function: IsFinished

Bei allen Funktionen, die einen Handle zurückgeben, kann der Status des Aufrufs abgefragt werden. Die Funktion gibt TRUE zurück, wenn der entsprechende Funktionsaufruf zum Handle abgeschlossen ist.

Name	Datentyp	Kommentar
callHandle		Handle of the corresponding function call e.g. recalibrate.

Function: Recalibrate

Führt eine Neukalibrierung des betreffenden Hardwarekanals durch. Diese Funktion ist nur wirksam, wenn der Kanal belegt ist und über eine Kalibrierungshardware verfügt.

Name	Datentyp	Kommentar
recalibrate	DINT	
slot	DINT	Slot of the channel to calibrate (valid 1 4 depending on hardware).
signal	DINT	Signal of the channel to calibrate. Count starts with 1.

Function: set2PointCharacteristic

Legt eine Zweipunkt-Kennlinie für ein Signal fest.

Name	Datentyp	Kommentar
Set2Pointcharacteri- stic	DINT	
slot	DINT	
signal	DINT	(* slot of the hardware (valid 1 4 depending on hardware)*)
Point1electrical	REAL	(* signal nr of the hw slot (valid 1 4 depending on hardware)*)
Point1physikal	REAL	(* 1. point electrical value*)
Point2electrical	REAL	(* 1. point physical value*)
Point2physical	REAL	(* 1. point electrical value*)

Function: setHoldPeak

Diese Funktion hält einen Spitzenwert bzw. gibt ihn frei.

Name	Datentyp	Kommentar
setHoldPeak	DINT	
slot	DINT	Slot of peak value (valid 1 4 depending on hardware)
signal	DINT	Signal of peak value (valid 1 4 depending on hardware)
hold	BOOL	hold = true; run = false

Function: setLimitswitchValue

Legt den Grenzwertschalterwert fest. Der Grenzwertschalterwert ist der Wert, bei dem das entsprechende Grenzwertschalter-Flag gesetzt wird.

Name	Datentyp	Kommentar
setLimitswitchValue	DWORD	
nr	DINT	Nr of the limit switch starting with 0
value	REAL	New value of the limit switch

Function: SetParameterSet

Legt den aktuellen Parametersatz fest. Der aktuelle Parametersatz ist über den HBM PMX CODESYS-E/A verfügbar. Die Parametersätze müssen vorab über das Web-Interface konfiguriert werden. Diese Funktion gibt einen Handle zurück, der über die Funktion "isFinished" abgefragt werden kann. Es ist trotzdem möglich, dass die Parameterumschaltung bei Abschluss dieses Aufrufs noch nicht beendet ist, da diese Funktion nur deren Start auslöst. Verwenden Sie Systemereignis mit Ereignisnummer = 2000, um über einen Trigger zu prüfen, ob die Parametersatzumschaltung erfolgreich war.

Name	Datentyp	Kommentar
setParameterSet	DINT	
paremeternr	DINT	The parameter of the desired parameterset

Function: SetResetPeak

Setzt den Spitzenwert zurück. Diese Funktion sollte zur Durchführung eines vollständigen Reset-Zyklus zweimal aufgerufen werden.

Name	Datentyp	Kommentar
setResetPeak	DINT	
slot	DINT	Slot of peak value (valid 1 4 depending on hardware).
signal	DINT	Signal of peak value (valid 1 4 depending on hardware).
reset	BOOL	True: peak is held in reset, false: peak block operates

Function: SetShuntState

Legt den Shunt-Status eines Signals fest.

Name	Datentyp	Kommentar
setShuntState	DINT	Handle: check with isFinished(handle)
slot	DINT	The slot to modify, valid 1 4 and Cardtype PX460 only
signal	DINT	The signal to modify, valid 2, 4
shunt	DINT	The new shunt value off=0, on=1

Function: SetToZero

Legt den Offset so fest, dass für den Messwert null gilt. Beachten Sie, dass diese Funktion den aktuellen Parametersatz beeinträchtigt. Die Umkehrung erfolgt über "setUserOffset(...,0.0)".

Name	Datentyp	Kommentar
setToZero	DINT	
slot	DINT	Slot of corresponding measval (valid 1 4)
signal	DINT	Signal of corresponding measval (valid 1 4 depending on hardware)

Function: setUserOffset

Legen Sie einen benutzerdefinierten Messwert-Offset fest. Beachten Sie, dass diese Funktion den aktuellen Parametersatz beeinträchtigt.

Name	Datentyp	Kommentar
setUserOffset	DINT	
slot	DINT	Slot of corresponding measval, use 9 for computed channels
signal	DINT	Signal of corresponding measval, starting with 1
offset	REAL	The new offset value

Function: setZeroTargetValue

Durch Festlegen eines Zielwerts für Null kann eine Konstante zu einem aktuell gemessenen Wert für ein spezifiziertes Signal addiert werden.

Name	Datentyp	Kommentar
startZeroTargetValue	DINT	
slot	DINT	

Name	Datentyp	Kommentar
signal		(* slot of the hardware (should be 9 for calculated channels) *)
value	DINT	(* nr of the calculated channel *)

Function: startGetShuntState

Initiiert eine Änderung des Shunt-Status einer PX460.

Name	Datentyp	Kommentar
startGetShuntState	DINT	Handle: query with getShuntState(handle)
slot	DINT	Sthe slot to modify, valid 1 4 and Card PX460 only
signal	DINT	The signal to modify valid 2,4

Function: startLedEffect

Verschiedene LED-Effekte, z. B. zum Orten des PMX-Geräts oder für eine Rückmeldung an den Benutzer vor dem Gerät.

Name	Datentyp	Kommentar
startLedEffect	DINT	Handle which can be queried by isFinished
tinInSeconds	DINT	The duration in seconds of the effect
effect	DINT	Effect type: 0 green running, 1 yellow running, 2 red running, 3 green blink, 4 yellow blink, 5 red blink

Function: setTedsSetup

Führt eine erneute Initialisierung des TEDS-Setups für den angegebenen Kanal durch.

Name	Datentyp	Kommentar
startTedsSetup	DINT	
slot	DINT	Slot of the hardware (valid 1 4 depending on hardware)
signal	DINT	Signal nr of the hw slot (valid 1 4 depending on hardware)

18.7 Taskkonfiguration

Unter MainTask können folgende Task-Typen ausgewählt werden:

Zyklisch

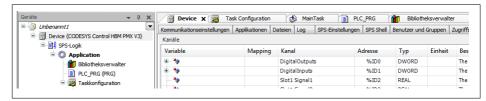
Der Task wird asynchron zu den Messwerten gestartet. *Das Intervall sollte mindestens 4 ms betragen*, das ist die kürzest mögliche Auflösung.

Extern – Measval Event

Der Task wird synchron mit den erfassten Messwerten gestartet. Die Aufruf-Frequenz stellen Sie im Dialog **System-Options** ein. Voreinstellung: 1200 Hz, d. h., bei einer Abtastrate von 19200 Hz wird nach jedem 16. Messwert der Task gestartet.

Extern – SystemEvent

Der Task wird beim Eintreffen eines PMX-System-Events gestartet (diese Events werden auch in dem Systemlog des Geräts angezeigt). Die Nummer des Events wird im Task von der Bibliotheks-Funktion getSystemeventNr geliefert (siehe Abschnitt 18.10, "Systemevents für PMX", Seite 318).


Die Systemereignisse rufen Sie über den Browser unter dem Gerätepfad http://<pmx gerätename>/data/systemevent.xml ab.

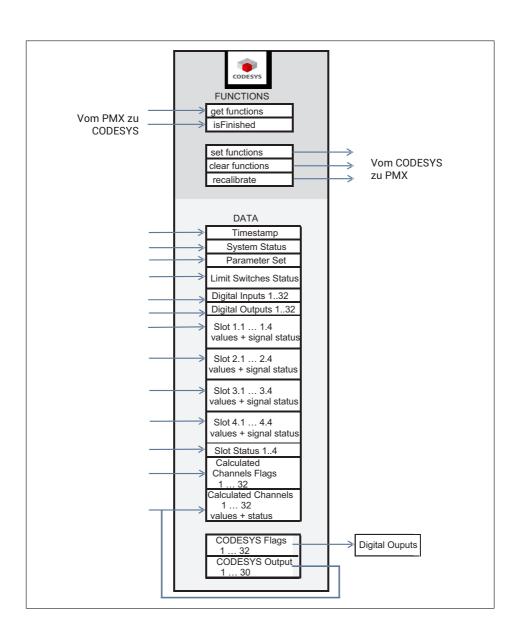
Wählen Sie nach Möglichkeit nur diese Task-Typen aus.

18.8 Zyklische Daten

Die zyklischen mit der PMX-Firmware ausgetauschten Daten werden so angezeigt:

Links im Projektbaum CODESYS Control HBM PMX V3 doppelklicken. Das Register Internal I/O Abbild wählen.

Zum Verbinden mit einer existierenden Programm-Variablen gleichen Typs in die gewünschte Zelle in der Spalte Variable doppelklicken.


Kanäle				
Variable	Mapping	Kanal	Adresse	Тур
 ₩		Slot3 Signal2	%ID11	REA
4		Slot3 Signal3	%ID12	REA
Application.PLC_PRG.foo	🌯	Slot3 Signal4	%ID13	REA
**		Slot4 Signal1	%ID14	REA
¥a		Slot4 Signal?	%ID15	RFΔ

18.9 Signallaufplan (I/O-Mapping)

Im I/O-Mapping können alle eingehenden Signale vom PMX in die CODESYS-Applikation und aus der Applikation in das PMX zurück verbunden (gemapped) werden.

Hinweis

Über den PMX-Webserver werden die von der CODESYS-Applikation eingehenden Signale weiteren Funktionen (z. B. zur Verwendung im Analogausgang oder in Berechnungskanälen) zugeordnet.

18.10 Systemevents für PMX

Wichtig

Die PMX-Systemevents sind nur in Tasks abrufbar, die als externes event / Systemevent gestartet wurden. Die Liste der Events zeigen Sie durch Eingabe des folgenden Aufrufs in der Browserzeile an:

http://<pmx>/data/systemevent.xml/, <pmx> steht für die URL des PMX-Gerätes.

18.10.1 All

Id: 1 Name:propertyChanged Argument:dbusInterface Type:string Argument:value Type:variant

Argument:serviceName Type:string

Description: Property changed Service: %3, Value: %2 %1

Id: 2 Name:valueCorrected
Argument:dbusInterface Type:string

Argument:newValue Type:string
Argument:serviceName Type:string

Description: Value changed to %2, Interface:%1, Service:%3

Id: 42 Name:serviceAdded

Argument:serviceName Type:string Description: Service started:%1

Id: **43** Name:serviceRemoved Argument:serviceName Type:string Description: Service stopped:%1

18.10.2 com.hbm.fwconfig

Id: 1000 Name:Firmwareaktualisierung

Argument:state Type:enum

Description: firmware update in progress: %1

Id: 1001 Name:testmessage Argument:integer Type:int32 Argument:string Type:string

Description: test message: interger:%1 string:%2

Id: 1002 Name:firmwareDeleted

Description: Firmware has been deleted. Id: **1010** Name:networkAddressChange

Argument:address Type:string

Description: Network address change to %1

Id: 1011 Name:deviceNameChange

Argument:name Type:string

Description: Device name changed to %1

Id: 1012 Name:hostnameInvalid

Argument:invalidHostname Type:string

Argument:validHostname Type:string

Description: Given Hostname %1 is invalid. Keeping %2 as Hostname.

Id: 1013 Name:pwResetVerifyFailed

Description: Administator passwort reset failed: invalid signature!

Id: 1014 Name:pwResetFileError

Description: Administator passwort reset failed: file operation failed!

Id: 1015 Name:pwResetFormatError

Description: Administrator passwort reset failed: file format invalid!

Id: 1016 Name:pwResetHostnameError

Description: Administrator passwort reset failed: hostname does not match!

Id: 1017 Name:pwResetMacError

Description: Administrator passwort reset failed: mac does not match!

Id: 1018 Name:pwResetSuccessful

Description: Administrator passwort reset successfull!

Id: 1019 Name:codesysFileRemoved

Argument:deletedCODESYSFile Type:string

Description: The codesys application file:%1 has been deleted!

Id: 1111 Name:reboot

Description: PMX is rebooting

18.10.3 com.hbm.parameter

Id: 2000 Name:parameterChanged

Argument:oldParameterNr Type:int32

Argument:parameterNr Type:int32

Argument:jsonCurrentDomains Type:string

Description: parameter set changed from %1 to %2. Subdomains(%3)

Id: 2001 Name:parameterInconsistent

Argument:index Type:int32

Argument:correctedDomainindex Type:int32

Description: Inconsistent parameterset #%1 loaded. Setting to %2

Id: 2002 Name:parameterErrorCantDeleteLastParameter

Description: The last parameter must not be deleted!

besorption. The last parameter mast not be deleted.

Id: 2003 Name:parameterErrorCantDeleteLastDomain

Argument:domainName Type:string

Description: The last domain:%1 must not be deleted!

Id: 2004 Name:parameterErrorParameterSwitchIsLocked

Description: Parameter switching is locked! Could not switch parameters.

Id: **2005** Name:parameterSwitchFailed Argument:failedServices Type:string

Description: Parameter switching failed. Failed services:%1

Id: 2006 Name:parameterDeleteDomainNotFound

Argument:domain Type:string Argument:domainnr Type:int32

Description: %1: deleting domain %2 failed: Not found!

Id: 2007 Name:parameterDeleteDomainInUse

Argument:domain Type:string Argument:domainnr Type:int32

Description: %1: deleting domain %2 failed: In use!

Id: 2008 Name:parameterInvalidName

Argument:name Type:string

Description: Invalid name "%1": slashes not allowed.

Id: 2009 Name:parameterInvalidNameExists

Argument:name Type:string

Description: Invalid name "%1": Name exists. Id: **2010** Name:parameterDomainNotExists

Description: Domain does not exists.

Id: **2011** Name:parameterCantDeleteCurrent Description: Can't delete current parameter.

Id: **2012** Name:parameterCantDeleteBootup Description: Can't delete bootup parameter.

Id: **2013** Name:parameterListChanged Description: Parameter list has changed.

Id: **2014** Name:subparameterListChanged Description: Parameter list has changed.

18.10.4 com.hbm.fpgasrv

Id: **3000** Name:powerOverload Argument:status Type:string Argument:cardNr Type:int32

Description: %1Card %2: Power Overload

Id: **3001** Name:adcPhaseError Argument:status Type:string Argument:cardNr Type:int32

Description: %1Card %2: ADC Phase Error. This may break measurement values. Elec-

trostatic discharge? Damaged card?

Id: 3002 Name:stuckInOverflow

Argument:status Type:string

Argument:cardNr Type:int32

Argument:channel Type:int32

Description: %1Card %2, channel %3: Stuck in overflow

Id: 3003 Name:forcedSyncModeSet

Argument:type Type:string

Description: The user forces the device to be %1.

Id: 3004 Name:forcedSyncModeReleased

Description: User's forced sync mode disabled. Back to automatic sync mode.

Id: 3005 Name:syncUnlocked

Description: Not locked to incoming sync signal.

Id: 3006 Name:syncLocked

Description: Locked to incoming sync signal.

Id: 3007 Name:syncCannotLock

Argument:type Type:string

Description: %1Cannot lock to incoming sync signal.

Id: 3008 Name:syncAvailableSlaveMode

Description: Sync available. Switching to slave mode.

Id: 3009 Name:crcErrorsMasterMode

Argument:type Type:string

Description: %1Too many CRC errors on sync input. Temporarily switching to master mode.

Id: 3010 Name:noSyncSlaveMode

Description: The user forced this device to be slave, but it has no valid sync input.

Id: 3011 Name:noSyncMasterMode

Description: No sync input. Switching to master mode.

Id: 3012 Name: PX460FPGA failure

Description: The PX460 FPGA chip stopped and will be reconfigured. ESD event? Power problem?.

18.10.5 com.hbm.SysCfgMgr

Id: 4000 Name:wrongSensorType

Argument:slot Type:int32

Argument:signal Type:int32

Argument:sensortype Type:int32

Description: Wrong or unsupported sensortype. Slot:%1, Signal:%2, Sensortype:%3

Id: 4020 Name:measvalStatus

Argument:slot Type:int32

Argument:signal Type:int32

Argument:statusText Type:string

// "valid" or "invalid" Description: Measval-status changed. New status: '%3'. Slot:%1, Signal:%2

Id: 4040 Name:sensorSupplyOverloadStatus

Argument:statusText Type:string

// "activated" or "deactivated" Description: System status Sensor-Power-Output-Over-load has been %1'

Id: 4042 Name:bufferOverflowStatus

Argument:statusText Type:string

// "activated" or "deactivated" Description: System status Command-interface-buffer-overflow has been %1'

Id: 4044 Name:factorySettingsStatus

Argument:statusText Type:string

// "activated" or "deactivated" Description: System status Factory-Settings-Error has been %1'

Id: 4046 Name:datalogActiveStatus

Argument:statusText Type:string

// "activated" or "deactivated" Description: System status Datalogger-Ready has been %1'

Id: 4048 Name:datalogErrorStatus

Argument:statusText Type:string

// "activated" or "deactivated" Description: System status Datalogger-Ready has been %1'

Id: 4050 Name:datalogBufOvrStatus

Argument:statusText Type:string

// "activated" or "deactivated" Description: System status Datalogger-Buffer-Overrun has been %1'

Id: 4052 Name:datalogBuf50Percent

Argument:statusText Type:string

// "activated" or "deactivated" Description: System status Datalogger-Buffer-50% has been %1'

Id: 4100 Name:tedsBitlenFrr

Argument:slot Type:int32

Argument:signal Type:int32

Argument:currentBitpos Type:int32

Argument:totalBitlen Type:int32

Description: TedsParser: Current TEDS bitposition is too big. Slot:%1, Signal:%2, current bitpos.:%3, total bitlen.:%4

Id: 4102 Name:tedsUnsupportedManufacturerID

Argument:slot Type:int32

Argument:signal Type:int32

Argument:manufacturerID Type:int32

Description: TedsParser: Unsupported manufacturer ID. Slot:%1, Signal:%2, manufacturer ID:%3

Id: 4104 Name:tedsUnsupportedTemplateIDorSelector

Argument:slot Type:int32 Argument:signal Type:int32

Argument:templateID Type:int32

Argument:selector Type:int32

Description: TedsParser: Unsupported template ID. Slot:%1, Signal:%2, template ID:%3, selector ID:%4

Id: 4106 Name:tedsUnknownIEEETemplate

Argument:slot Type:int32 Argument:signal Type:int32

Argument:templateID Type:int32

Description: TedsParser: Unknown IEEE template. Slot:%1, Signal:%2, template ID:%3

Id: 4108 Name:tedsUnknownHbmTemplate

Argument:slot Type:int32

Argument:signal Type:int32 Argument:templateID Type:int32

Description: TedsParser: Unknown HBM template. Slot:%1, Signal:%2, template ID:%3

Id: 4110 Name:tedsEmbeddedTemplateNotSupported

Argument:slot Type:int32 Argument:signal Type:int32

Description: TedsParser: Embedded template not supported. Slot:%1, Signal:%2

Id: 4112 Name:tedsTemplateError

Argument:slot Type:int32 Argument:signal Type:int32

Description: TedsParser: Template error. Slot:%1, Signal:%2

Id: 4114 Name:tedsUnknownSelector

Argument:slot Type:int32 Argument:signal Type:int32

Description: TedsParser: unknown TEDS selector. Slot:%1, Signal:%2

Id: 4120 Name:tedsNoValidData

Argument:slot Type:int32 Argument:signal Type:int32

Description: TedsParser: No valid TEDS data. Slot:%1, Signal:%2

Id: 4122 Name:tedsNotFound

Argument:slot Type:int32 Argument:signal Type:int32

Description: TedsParser: No TEDS available or not found. Slot:%1, Signal:%2

Id: 4124 Name:tedsNoDataToWrite

Argument:slot Type:int32

Argument:signal Type:int32

Description: Teds: No TEDS data available. Slot:%1, Signal:%2

Id: 4130 Name:tedsSaveUsageFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: Save param 'usage' failed. Slot:%1, Signal:%2

Id: 4132 Name:tedsSaveConvertUnitFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: Save param 'convert unit to device unit' failed. Slot:%1, Signal:%2

Id: 4134 Name:tedsSaveParamsFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: Save parameters failed. Slot:%1, Signal:%2

Id: 4140 Name:tedsDestUnitUnknown

Argument:destUnit Type:int32 Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: Destination Unit code %1 not found. Slot:%2, Signal:%3

Id: 4142 Name:tedsUnitConversionFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: Unit conversion failed. Slot:%1, Signal:%2

Id: 4144 Name:tedsCantGetUnitcode

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: Can't get current unitcode. Slot:%1, Signal:%2

Id: 4150 Name:tedsConfigurationOK

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: channel configuration OK. Slot:%1, Signal:%2

Id: 4152 Name:tedsConfigurationFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: channel configuration failed. Slot:%1, Signal:%2

Id: 4160 Name:tedsConfigHbmPulseFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: sensor configuration for 'HBM pulse' failed. Slot:%1, Signal:%2

Id: 4162 Name:tedsConfigleeeLvdtExcFregFailed

Argument:slot Type:int32 Argument:signal Type:int32 Description: TEDS: sensor configuration for 'leeeLvdt' failed (exc.frequ. or ampl.). Slot:%1, Signal:%2

Id: 4164 Name:tedsConfigWrongCardtype

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: sensor configuration failed, sensortype not supported from this measurement card. Slot:%1. Signal:%2

Id: 4166 Name:tedsConfigleeeBridgeFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: sensor configuration for 'HBM pulse' failed. Sensitivity, excitation voltage or bridge resistors not suitable for Slot:%1, Signal:%2

Id: 4168 Name:tedsConfigSensorFailed

Argument:slot Type:int32
Argument:signal Type:int32

Description: TEDS: sensor configuration failed. Slot:%1, Signal:%2

Id: 4170 Name:tedsConfigHbmDisplExcFregFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: sensor configuration failed because of exc-frequency or amplitude. Slot:%1, Signal:%2

Id: 4180 Name:tedsConfigScalingOK

Argument:slot Type:int32

Argument:signal Type:int32

Argument:physSignalVal_x1 Type:double

Argument:usrVal_y1 Type:double

Argument:physSignalVal_x2 Type:double

Argument:usrVal_y2 Type:double

Description: TEDS: scaling configuration OK. Slot:%1, Signal:%2, Scaling: physSignal-Val_x1:%3, usrVal_y1:%4; physSignalVal_x2:%5, usrVal_y2:%6

Id: 4182 Name:tedsConfigScalingFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: scaling configuration failed. Slot:%1, Signal:%2

Id: 4190 Name:tedsConfigHpFilterNotSupported

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: highpass filter configuration not supported. Slot:%1, Signal:%2

Id: 4192 Name:tedsConfigFilterCharactFailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: setting filter characteristic failed. Slot:%1, Signal:%2

Id: 4194 Name:tedsConfigFilterCutOffAdapted

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: cut off frequency adapted. Slot:%1, Signal:%2

Id: 4196 Name:tedsConfigTaraNotSupported

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: tara configuration not supported. Slot:%1, Signal:%2

Id: 4198 Name:tedsConfigUCCfailed

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: user channel comment configuration failed. Slot:%1, Signal:%2

Id: 4200 Name:tedsSkipCalCurve

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: cal curve ignored. Slot:%1, Signal:%2

Id: 4202 Name:tedsSkipCalTable

Argument:slot Type:int32 Argument:signal Type:int32

Description: TEDS: cal table ignored. Slot:%1, Signal:%2

Id: 4300 Name:changeShuntStat

Argument:slot Type:int32 Argument:signal Type:int32 Argument:shuntStat Type:int32

Description: Slot:%1, Signal:%2 shunt state changed:%3

18.10.6 com.hbm.storagemanager

Id: **5000** Name:saveStarted Argument:filename Type:string Description: Started saving to file %1

Id: **5001** Name:saveFinished Argument:filename Type:string

Description: Saved systemstate to file %1

Id: **5002** Name:restoreStarted Argument:filename Type:string Argument:systemrestore Type:bool Description: Started restore from file %1

Id: **5003** Name:restoreFinished Argument:filename Type:string Argument:systemrestore Type:bool

Description: Restored systemstate from file %1

Id: 5004 Name:systemdefaultsUploaded

Argument:filename Type:string

Description: Systemdefaults uploaded %1

Id: **5005** Name:hashFailed Argument:filename Type:string Description: md5 hash failed for %1

18.10.7 com.hbm.sigproc

Id: 6002 Name:noMoreDspSignalsAvail

Description: No more internal signals available."

Id: 6003 Name:noMoreCalcedChannelAvail

Description: No more calculated channels available."

Id: 6050 Name:blockNotSupported

Argument:blockNbr Type:int32

Description: Block type %1 is not supported.

Id: 6051 Name:blockCreated

Argument:type Type:string

Argument:calcOrder Type:int32

Description: Function block '%1' at calculation rank %2 created.

Id: 6052 Name:blockDeleted

Argument:type Type:string

Description: Function block '%1' deleted.

Id: 6053 Name:calcChanCreated

Argument:channelNbr Type:int32

Description: Calculated channel %1 #%2 created.

Id: 6054 Name:calcChanDeleted

Argument:channelNbr Type:int32

Description: Calculated channel %1 #%2 deleted.

Id: 6055 Name:tooManyFunctionBlocks

Description: Too many function blocks.

Id: 6100 Name:calcChanRuntimeOverrun

Description: Calculated channels runtime overrun.

Id: 6200 Name:setToZero

Argument:slot Type:int32

Argument: signal Type:int32

Argument: newOffset Type:double

Description: slot %1.%2 zero value=%3

18.10.8 com.hbm.fieldbus

Id: **7001** Name:fieldbusRestart Argument:bustype Type:string Description: %1 is restarting.

Id: 7002 Name:fieldbusFatalFault

Description: Fieldbus fatal fault. Device restart required.

Id: **7050** Name:txedCalculatedChans Argument:chanCount Type:int32

Description: %1 calculated channels transmitted on fieldbus.

18.10.9 com.hbm.CatmanServer

ld: 8001 Name:test

Argument:cat_is_goil Type:int32

Description: %1 is here.

Id: 8002 Name:oldConnectionTerminated

Argument:conCount Type:int32 Argument:timeInSeconds Type:int32

Description: More than %1 Eth. Connectioons requested. Oldest terminated. Last ac-

tivity %2s ago.

Id: 8003 Name:newConnectionEstablished

Description: New Eth. Connection on port 55000 established.

Id: **8004** Name:connectionClosed Description: Eth. connection closed.

18.10.10 com.hbm.meassrv

Id: 9001 Name:bufferOverrun

Description: Buffer overrun occured.

18.10.11 com.hbm.httpdata

Id: 10001 Name:newSession Argument:session Type:int32 Argument:address Type:string

Description: New session id:%1 address:%2.

Id: **10002** Name:closedSession Argument:session Type:int32 Argument:address Type:string

Description: Closed session id:%1 address:%2.

18.10.12 GUI

Id: 11001 Name:dialogOpened

Argument:session Type:int32

Argument:dialogname Type:string

Description: Session id:%1 Dialog opened: %2.

Id: 11002 Name:dialogClosed

Argument:session Type:int32
Argument:dialogname Type:string

Description: Session id:%1 Dialog closed: %2.

Id: 11003 Name:viewOpened

Argument:session Type:int32

Argument:viewname Type:string

Description: Session id:%1 View opened: %2.

Id: 11004 Name:viewClosed

Argument:session Type:int32

Argument:viewname Type:string

Description: Session id:%1 View closed: %2.

Id: 11005 Name:UserLevelChanged

Argument:session Type:int32

Argument:userlevel Type:string

Description: Session id:%1 userlevel changed to %2.

Id: 11100 Name:calibrationAssist

Argument:slot Type:int32

Argument:signal Type:int32

Argument:msg Type:string

Description: CalibrationAssist: Slot:%1 signal:%2%3

18.10.13 com.hbm.DataLogger

Id: 12001 Name:testLogger

Argument:log_baby_log Type:int32

Argument:type Type:string

Description: Log it!

Id: 12002 Name:createServiceFailed

Description: Creating data logger measservice failed.

Id: 12005 Name:maxFilecountReached

Argument:fileCount Type:int32

Description: Max filecount in directory reached (%1). Logging stopped.

Id: 12006 Name:storageMediaFull

Description: Data logger storage media is full. Logging stopped.

Id: **12007** Name:loggingStarted Description: Data logging started.

Id: **12008** Name:logging Description: Logging data.

Id: **12009** Name:openingFileFailed Argument:errcode Type:int32 Argument:errstr Type:string

Description: Opening datalogger file failed. Code %1:%2. Try again.

Id: 12010 Name:erasingOldestFileNoPar

Argument:filename Type:string Description: Erasing oldest file %1.

Id: 12011 Name:erasingOldestFileNoPar

Description: Erasing oldest file.

Id: 12012 Name:erasingOldestFileFailed

Argument:filename Type:string Argument:errcode Type:int32 Argument:errstr Type:string

Description: Erasing oldest file %1 failed. ErrCode %2:%3.

Id: 12014 Name:closeFile

Description: Close datalogger file.

Id: 12015 Name:writeError Argument:errcode Type:int32 Argument:errstr Type:string

Description: Writing to datalogger file failed. ErrCode %1:%2.

Id: **12016** Name:fileRenamed Argument:filename Type:string

Description: Current datalogger file renamed to %1.

Id: **12017** Name:createTmpLogfile Argument:filename Type:string

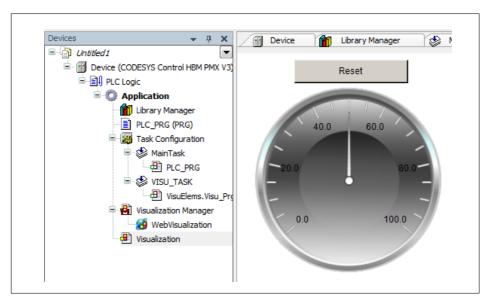
Description: Creating temporary datalogger file %1.

Id: **12018** Name:dataloggerHardRestart Description: Datalogger restarted.

Id: **12019** Name:dataloggerStartRequested Description: Datalogger stop requested. Id: **12020** Name:dataloggerStartRequested Description: Datalogger start requested.

Id: 12021 Name:dataloggerDirectoryRemoved

Argument: filename Type:string


Description: Datalogger start requested %1.

18.11 WebVisualisierung

CODESYS im PMX enthält die WebVisu. Damit visualisieren und steuern Sie den Prozess über eine frei gestaltbare Webseite. Der Webserver läuft dabei in CODESYS im PMX.

Im Projektbaum auf Application rechtsklicken. Dann Objekt hinzufügen -> Visualisierung.

Jetzt können Sie grafische Elemente hinzufügen und mit Programm-Variablen verbinden. Beispiel:

Nach dem Starten der WebVisu im PMX ist die Webseite von einem Webbrowser aus unter <pmx>:8080/webvisu.htm erreichbar. <pmx> ist hier der Gerätename, den Sie gegebenenfalls durch den tatsächlichen Gerätenamen oder eine IP-Adresse ersetzen müssen. "webvisu.htm" ist der Standardname seitens CODESYS. Er kann im Visualization Manager geändert werden.

Von der PMX-Benutzeroberfläche ist die WebVisu über das CODESYS-Symbol in der Fußzeile verlinkt. Voraussetzung ist der Standardname "webvisu.htm"

Tipp

Beispiele zur Verwendung von WebVisu finden Sie in den Tecnotes auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

18.12 CAN-Schnittstelle

Das Gerät kann mit CODESYS als CANopen-Slave oder -Master betrieben werden. Fügen Sie dazu eine CAN-Komponente und dann einen CANOpen Stack hinzu. Sie finden mehrere Beispiele dazu im mitgelieferten Package.

Tipp

Beispiele zur Verwendung von CODESYS finden Sie in den Tecnotes auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/.

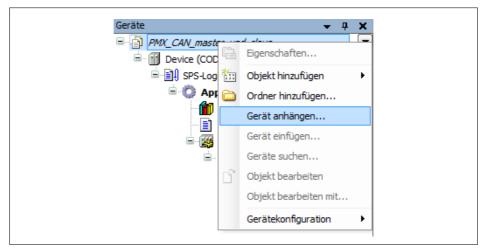
18.13 CAN-Master- und -Slave-Betrieb

Kurzbeschreibung

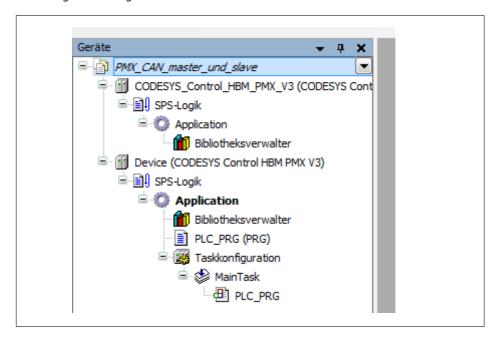

Dies ist eine Anleitung zum Erstellen von CODESYS-Anwendungen auf PMX. Grundlegende Erfahrungen mit CODESYS werden vorausgesetzt. Erfahrene Benutzer können davon gerne abweichen. Weitere Hilfen gibt es mit den Beispielen, die beim Importieren des PMX-Packages standardmäßig auf dem Desktop installiert werden, und der Online-Hilfe des Packages.

Die erforderlichen Dateien können Sie von der Support-Seite von hbm.com herunterladen.

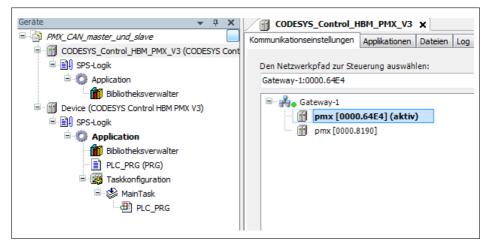
In diesem Beispiel werden zwei PMX über die CANopen-Schnittstelle miteinander gekoppelt. Ein PMX arbeitet als Master, das zweite PMX als Slave im Netzwerk. Im zweiten PMX wird ein PDO mit 4 Messwerten erzeugt, das daraufhin die Messwerte an das erste PMX (Master) überträgt und diese dort auf 4 Berechnungskanälen anzeigt.


Start

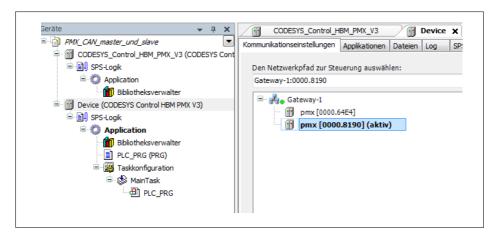
CODESYS-Umgebung aufrufen. Ein Standardprojekt erstellen und als Gerät PMX wählen.


Im geöffneten Projekt, in der links erscheinenden Gerätestruktur, auf den Dateinamen mit rechts klicken und Gerät anhängen... auswählen ...

... und ein weiteres PMX auswählen.

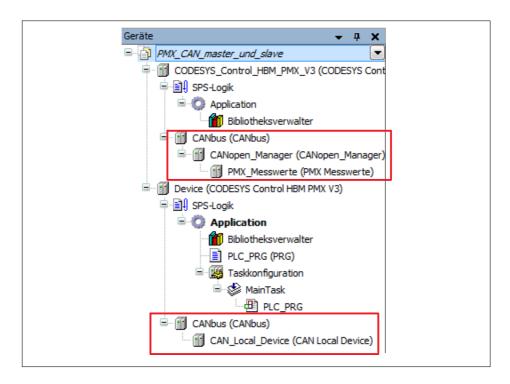


Damit ergibt sich folgende Struktur mit zwei PMX-Geräten:

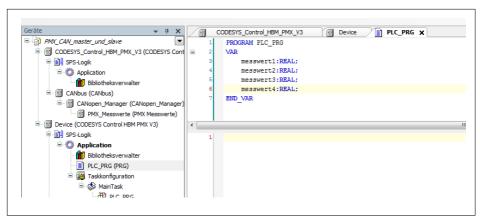


Aktivieren der Gateways

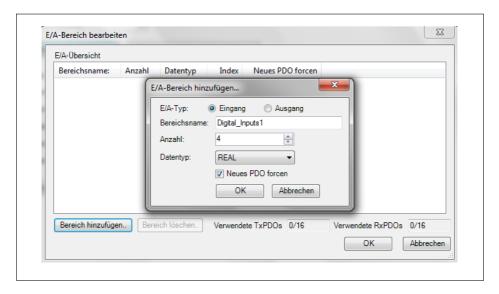
- Doppelklick auf das erste PMX (CODESYS_Control).
- Im sich rechts öffnenden Fenster auf das Gateway doppelklicken, um den Status zu aktualisieren.
- Anschließend auf eines der PMX-Geräte doppelklicken (hier: [0000.64E4]), um dieses aktiv zu setzen.

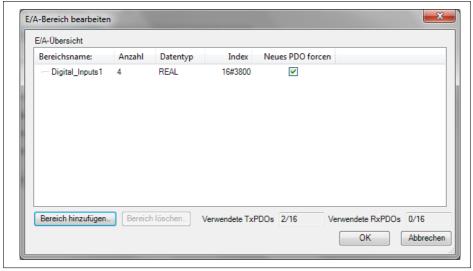


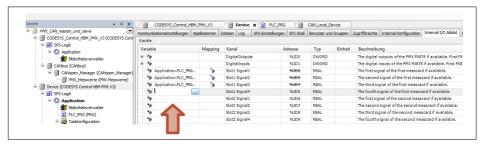
Den Vorgang für das zweite PMX (Device) in der Struktur wiederholen und entsprechend dem anderen PMX zuweisen (hier: [0000.8190]).


CAN-Geräte anhängen

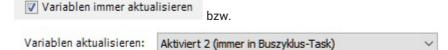
- Für den Master-Betrieb: Für CODESYS_Control einen CAN-Bus, einen CANopen_Manager und PMX_Messwerte über die Auswahl Gerät anhängen hinzufügen.
- Für den Slave-Betrieb: Für Device einen CAN-Bus und ein CAN_Local_Device analog anhängen.
- Bei den CAN-Bussen die Baudrate einstellen (hier: 100000 bits/s).

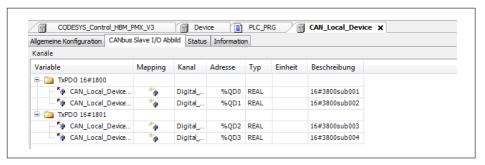

Variablen deklarieren und Mappen auf dem Device

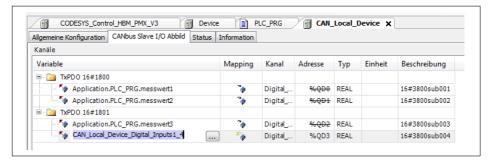

Das Register PLC-PRG über das Device aufrufen und Variablen gemäß dem Bild unten deklarieren.


Doppelklick auf CAN_Local_Device.

- Im sich öffnenden Fenster auf die Schaltfläche E/A Bereich bearbeiten klicken.
- Im Fenster E/A Bereich bearbeiten auf Bereich hinzufügen klicken und einen Bereich wie unten dargestellt hinzufügen.

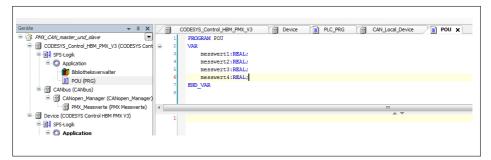



Auf Device oder Öffnen des Registers doppelklicken. Den Reiter Internal I/O Abbild" wählen. In der Spalte Variable in die Zelle doppelklicken, um eine Variable auf einen Slot zu mappen.

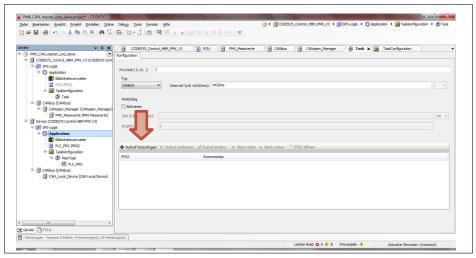

Bitte beachten: Haken im Feld in der unteren rechten Ecke immer setzen:

Erneut das CAN_Local_Device öffnen und das Register CAN-Bus Slave I/O Abbild wählen ...

... auch hier die Variablen mappen.

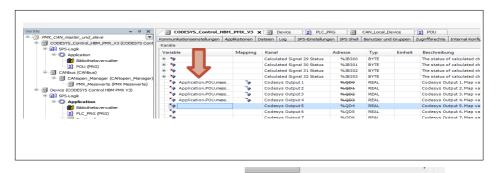


▶ Bitte beachten: Haken im Feld in der unteren rechten Ecke immer setzen:



Variablen deklarieren und Mappen auf dem CODESYS_Control

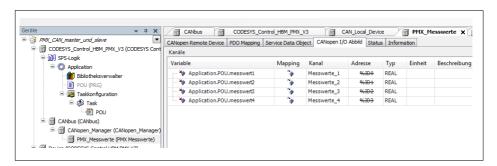
Rechtsklick auf Application unter dem PMX CODESYS_Control, zu ein Objekt hinzufügen scrollen und POU auswählen. Hier die Variablen analog wie beim Device deklarieren.



Rechtsklick auf Application und Objekt hinzufügen wählen und eine Taskkonfiguration auswählen.

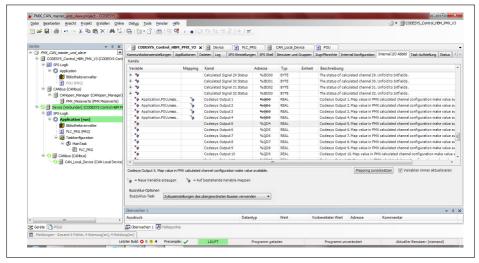
- Im Fenster rechts Aufruf hinzufügen wählen und POU auswählen.
- Doppelklick auf CODESYS Control oder Register anklicken.

▶ Das Register Internal I/O Abbild wählen. In der Spalte Variable mit Doppelklick die Zelle öffnen, um eine Variable auf den entsprechenden CODESYS-Output-Kanal zu mappen.

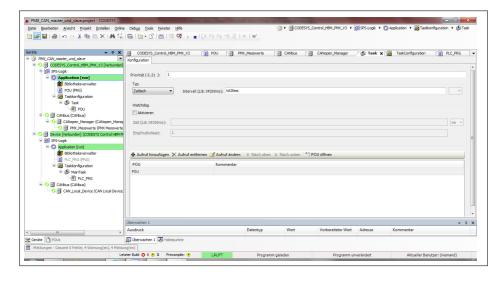


✓ Variablen immer aktualisieren

 Beachten: Haken im Feld immer setzen bzw.


Variablen aktualisieren: Aktiviert 2 (immer in Buszyklus-Task)

Unter PMX_Messwerte die Variablen mappen.



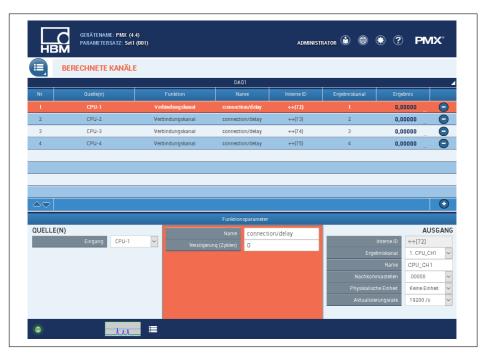
Programme ausführen

Auf Device klicken und einloggen, die Anwendung anschließend mit F5 starten. Folgender Bildschirm wird angezeigt.

- Im Anschluss ausloggen (wichtig: ohne Anhalten der Applikation).
- Rechtsklick auf Application unter CODESYS_Control und Aktive Applikation setzen auswählen und erneut einloggen.

Webbrowser einrichten

▶ PMX im Browser öffnen. Da zwei PMX-Geräte angeschlossen sind, erscheint folgende Übersicht. Die IP-Adresse des zweiten PMX kopieren. Die beiden PMX in jeweils einem eigenen Tab öffnen.


Überprüfen der Terminierung. Dafür in jedem der Geräte über den Administrator
 Einstellungen -> System -> Gerät -> System-Optionen aufrufen.

▶ Hier überprüfen, dass die CAN-Terminierung bei beiden Geräten eingeschaltet ist.

 Im Browser können die Werte auf den berechneten Kanälen angezeigt werden, dazu Verbindungskanal wählen, als Input den jeweiligen CPU-Kanal wählen und als Output einen berechneten Kanal festlegen. Dabei ausreichend Dezimalstellen auswählen.

Tipp

Weitere Informationen und Hilfen zur CODESYS-Programmerstellung erhalten Sie in der Online-Hilfe von CODESYS, im Internet unter

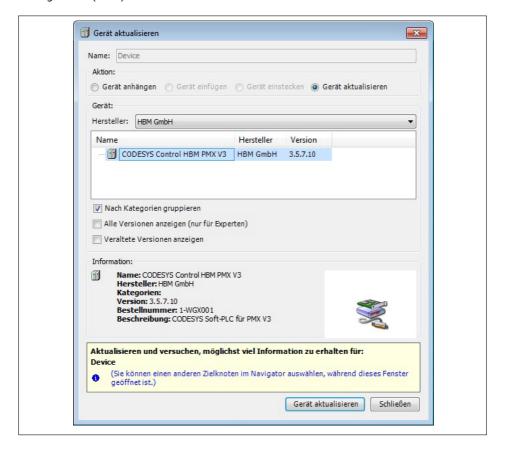
http://www.codesys.com/ oder im CODESYS-Chat unter

http://forum-de.codesys.com/

Nutzen Sie vorhandenes Wissen und Erfahrung im CODESYS-Store. Dort finden Sie viele Programm- und Lösungsbeispiele zu unterschiedlichsten Aufgabenstellungen: http://store.codesys.com/? store-default& from-store-en

18.14 PMX-Package

Das PMX-Package 0.94 enthält neue Funktionen für PMX (siehe Release Notes). Beim Aktualisieren des PMX-Packages von Version 0.6 auf 0.94 gehen Sie wie folgt vor:


- Das neue PMX-Package installieren. Dies geschieht über den Package-Manager von CODESYS.
- 2. Gerät (PMX) aktualisieren. Hier werden die PMX-Bibliothek, das I/O-Mapping und die Systemevents aktualisiert.

Information

Package Version 0.94 benötigt die PMX-Firmware 3.0. Führen Sie gegebenenfalls ein Firmware-Update durch. Die aktuelle PMX-Firmware finden Sie auf hbm.com: https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/. CODESYS-Applikationen die mit älterem PMX-Package (0.4 oder 0.6) und PMX-Firmware < 3.0 erstellt wurden, sind gegebenenfalls nicht mehr lauffähig und deren Code muss angepasst werden.

Dialog: Gerät (PMX) aktualisieren

19 DATENSPEICHERUNG

Messwerte und Daten aus Berechnungskanälen sowie Daten, die auf dem Feldbus oder in CODESYS vorliegen, können auf verschiedene Weise mit dem PMX gespeichert werden. Dabei ist die Datenmenge, die Speichergeschwindigkeit und das Speicherziel entscheidend. Die Geschwindigkeit der Datenspeicherung hat keinen Einfluss auf die Mess- und Abtastraten des PMX.

DAQ (Data Aquisition)

Zur Speicherung großer Datenmengen (DAQ) eignet sich die Ethernet-Schnittstelle des PMX mit angeschlossenem PC und DAQ-Software. Hier steht die HBM-Software catmanEasy/AP zur Verfügung oder individuelle Software, die Sie mittels der PMX-Treiber in .NET, LabVIEW oder DIAdem erstellen können. Über ein Ethernet-Netzwerk können Sie Werte von bis zu 20 PMX-Geräten messwertsynchron speichern.

Monitoring

Für autarke Monitoring-Anwendungen können Messwerte auch im PMX-Gerätespeicher (Größe 1 GB) oder auf einem USB-Speicher (Größe max. 32 GB), der am PMX eingesteckt wird, gespeichert werden. Hierbei lassen sich nur Werte speichern, die vom jeweiligen PMX erfasst werden. Für diese Art der Datenspeicherung benötigen Sie das Grundgerät WGX001 mit einem kostenlosen CODESYS-Programm ("Measure and Save1.2.projectarchive"), das in der Beispielsammlung unter https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/ erhältlich ist.

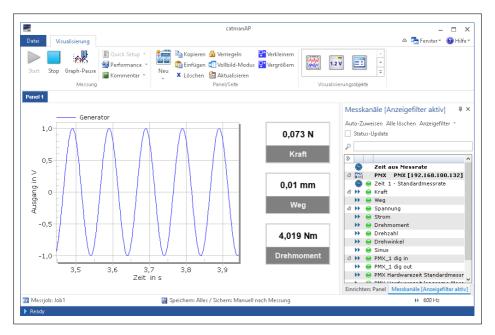
Eine Übersicht über die möglichen Signal- und maximalen Speicherraten zeigt die folgende Tabelle.

Signale	catman	API/LabVIEW/ DIAdem	CODESYS
Medium	Store on PC or Server		Store intern PMX (1GB) or USB-stick (32GB)
Measuring inputs (PX455, PX401, PX460)	х	х	х
Calculated channel	х	х	х
Digital inputs (PX878)	Х	Х	х
Digital outputs (PX878)	Х	Х	х
Analog outputs (PX878)	-	-	-
Signals from fieldbus (PROFINET®, EtherCAT®, EtherNet/IP™)	Max. 8 signals	Max. 8 signals	-

	read	write/store
green	19,2 kHz	19,2 kHz
yellow	2,4 kHz	10 Hz
orange	250 Hz	19,2 kHz

Tipp

Praktische Beispiele zur Datenspeicherung finden Sie in den TechNotes von PMX auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/


20 MESSDATENERFASSUNGSSOFTWARE CATMAN

Zur professionellen Messdatenaufzeichnung und Datenanalyse können Sie die PC-gestützte HBM-Messdatenerfassungssoftware catmanEasy/AP einsetzen. Damit stehen Ihnen viele Funktionen zur professionellen Data Aquisition (DAQ) zur Verfügung, die auch während der Inbetriebnahme und zur Qualitätsdatenerfassung hilfreich sind:

- Visualisieren, Speichern und Analysieren vom PMX-Messdaten, internen Berechnungskanälen, digitalen Ein-/ Ausgängen und Feldbusdaten mit bis zu 38400 Messwerten pro Sekunde und pro Kanal.
- Einfache PMX-System- und Kanalkonfiguration (Sensordatenbank, TEDS-Editor, Messrate, Filter, etc.).
- Messwert-Trigger durch PMX-Digitalein- und Ausgänge, externe SPS (Trigger inklusive Pre- und Post-Trigger, zyklische Speicherung, Langzeitmessung, etc.).
- Leistungsfähige Datenanalyse (Signal-zu-Signal, Zoom, Lupe, Lineal, Min/Max, FFT, Zuschneiden, Ausreißer eliminieren, etc.).
- Automatisch Berichte erstellen oder Messdaten anzeigen und exportieren (MS Word, Excel, etc).
- Erstellung eigener Prüf- und Messroutinen mit der Script-Sprache catman-Script.

Sie können bis zu 20 PMX gleichzeitig in einer Messung mit catman verwenden. Die Synchronisierung (<1 μs) erfolgt über die Sync-Anschlüsse im PMX (siehe *Kapitel 9, "Synchronisierung und Zeiterfassung", Seite 129*).

Soll das PMX zusammen mit andern Messgeräten in einer Messung verwendet werden (z. B. MGCplus oder QuantumX), werden die Geräte über NTP synchronisiert (±1 bis ±10 ms).

Wichtig

Während eine catman-Messung läuft, dürfen Sie im PMX keine Signale hinzufügen oder löschen, da sonst die catman-Messung abbricht.

Tipp

Von https://www.hbm.com/index.php?id=1254&L=1 können Sie eine voll funktionsfähige Demo-Version von catman kostenlos herunterladen.

21 BEFEHLSSATZ DES PMX

Mithilfe des Befehlssatzes (API) binden Sie das PMX in eigene Softwareapplikationen ein. Dazu zählen Microsoft Windows und Linux-basierte Softwaresysteme, z. B. Visual-Studio, LabVIEW oder Delphi. Damit realisieren Sie kundenspezifische Lösungen.

21.1 Voraussetzungen und Schreibweisen

- Der TCP-IP-Port des PMX ist 55000
- Die gesamten Befehle sind in der Befehlsliste (Abschnitt 21.2, ab Seite 353) zusammengefasst.
- Virtuelle analoge Kanäle (berechnete Kanäle) nutzen Kanal 9 (Steckplatz 9).
- Virtuelle digitale Kanäle (berechnete Kanäle, 1 = dig in, 2 = dig out) nutzen Kanal 10 (Steckplatz 10)
 - Aufgrund der binären Darstellung eines Gleitkommawertes werden nur die 24 niedrigsten Bits verwendet. Die 8 höchstwertigen Bits sind immer null.
- Zeichenfolgen müssen mit einem Anführungszeichen am Anfang und am Ende des Textes eingegeben werden. Ein Anführungszeichen innerhalb einer Zeichenfolge ist nicht zulässig!

In den folgenden Abschnitten werden zur besseren Übersichtlichkeit die folgenden Schreibweisen verwendet.

- (x) Befehls-Abschlusszeichen: Zeilenvorschub (LF) oder Wagenrücklauf/Zeilenvorschub (CRLF)
- (y) Antwort-Endsequenz: Wagenrücklauf/Zeilenvorschub (CRLF)
- Wagenrücklauf = Dezimal 13
 Zeilenvorschub = Dezimal 10
- Eine positive Antwort besteht normalerweise aus einer "0", gefolgt von (y). Eine negative Antwort ist in der Regel ein "?", gefolgt von (y).

Beispiel: TELNET-Verbindung

Eine einfache Möglichkeit, die Befehle des PMX zu nutzen, bietet das TELNET-Protokoll unter Windows.

Die IP-Adressen von PMX und PC (HOST) müssen zusammenpassen und die Teilnehmer über Ethernet verbunden sein (ggf. am PMX eine passende IP-Adresse vergeben, da in der Werkseinstellung DHCP verwendet wird).

Beispiel zur PMX-Befehlsliste in einer Telnet-Sitzung unter Microsoft Windows

Identifizieren Sie die IP-Adresse des PMX entweder durch direkte Adressvergabe oder im Dialog **Netzwerk** des PMX-Webbrowsers.

Öffnen Sie das Kommandozeilen-Eingabefenster:

Unter Windows 7: Start -> Alle Programme -> Zubehör -> Ausführen..

Gegebenenfalls muss unter Windows7 ein Telnet-Client aktiviert werden. Klicken Sie auf Start -> Systemsteuerung -> Programme und Funktionen -> Windows-Funktionen aktivieren oder deaktivieren. Scrollen Sie dann zu dem Punkt Telnet Client und aktivieren Sie diesen.

Klicken Sie auf **OK** und warten Sie. bis die Funktion installiert wurde.

 In Windows 10 müssen Sie in der Regel den Telnet-Client erst installieren: Geben Sie in die Suchleiste von Windows Windows-Features aktivieren oder deaktivieren ein und klicken Sie auf den gleichnamigen Eintrag. Scrollen Sie dann zu dem Punkt Telnet Client und aktivieren Sie diesen.

Klicken Sie auf **OK** und warten Sie, bis die Funktionen installiert wurde.


Telnet-Sitzung starten und Verbindung zum PMX aufbauen

Geben Sie Ausführen in die Suchleiste von Windows ein. Geben Sie dort folgendes an:

"Telnet <IP-Adresse des PMX> 55000"

Ersetzen Sie <IP-Adresse des PMX> durch die verwendete IP-Adresse.

Beispiel:

Messwerte holen:

PCS3.4(x) 'Kanäle 3 und 4 auswählen

0(y)

SPS1(x) 'Unterkanal 1 (von Kanälen 3 und 4) auswählen

0(y)

RMV?214(x) 'Messwerte abrufen.

9.998,8.888(y)

21.2 Befehlsliste

IDN? Identification Query

Ausgabe der Geräteidentifikation

Syntax: IDN?(x)
Parameter: keine

Antwort: String(y): eventuell mehr als 16 Zeichen

Beispiel: IDN?(x)

HBM,PMX,1234-5678,1.12, 6415M,0.20,myPMX (y)

Unternehmen, Gerätebezeichnung, Seriennummer, Firmware-Versionsnummer, Firmware build number. Hardware-Version. Hostname

AMT? Amplifier Type Query

Verstärkertyp ausgeben

Syntax: AMT?(x)
Parameter: keine
Antwort: q1(y)

q1	Verstärkertyp	
5125	PX401	
5126	PX455	
5128	PX460	
5127	PX878, not for measurement	
999 Änderungen vorbehalten	PX999 nur für proprietäre Befehle	
5130	Kanal (Steckplatz) 9, berechnete Kanäle	
5131	Kanal (Steckplatz) 10, digitale I/O	

PCS Programming Channel Select

Kanalauswahl für Finstellbefehle

Dieser Befehl dient zur Kanalauswahl für die danach folgenden Einstellbefehle.

Syntax: PCS p1,..., pxx (x)
Parameter: p1,..., pxx Kanäle

PCS 0 (x) wählt alle vorhandenen Kanäle aus

Anfangs sind alle Kanäle (Karten) ausgewählt.

Wenn ein Kanal (Karte oder Steckplatz) nicht verfügbar ist, wird dieser Kanal ignoriert und nicht der Liste hinzugefügt.

PCS(x) löscht alle ausgewählten Kanäle (Karten/Steckplätze). Danach gibt PCS?1 nur (x) zurück.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

PCS2 Programming Channel Select Query

Kanalauswahl für Einstellbefehle ausgeben

Syntax: PCS? p1(x)

Parameter: p1:Ausgabemodus

0 Vorhandene Kanäle 1 Ausgewählte Kanäle

Antwort: q1,.., q16 Liste vorhandener oder aktiver Kanäle

PCS?0 entspricht PCS?

SPS

Anfangs sind alle verfügbaren Unterkanäle (Signale) ausgewählt.

Subchannel Programming Select

Kanalauswahl für Einstellbefehle auswählen

Dieser Befehlt stellt die Unterkanal-Auswahlmaske für die Einstellungen ein. Die einzustellenden Module sollten bereits mit PCS ausgewählt sein.

Syntax: SPS p1,.., pxx(x)

Parameter: p1,.., pxx 1,.., xx Unterkanalauswahl

SPS 0 (x) wählt alle Unterkanäle eines Moduls aus

Syntax: SPS? p1(x)

Gibt zum Beispiel 1,2,3:3,4:1,2,3,4,5 zurück. Kanäle (Steckplätze/Karten) werden durch

":" getrennt.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

SPS2 Subchannel Programming Select Query

Kanalauswahl für Einstellbefehle ausgeben

Syntax: SPS? p1(x)

Parameter: p1:Ausgabemodus

0 Vorhandene Unterkanäle1 Ausgewählte Unterkanäle

Antwort: q1,.., qxx Liste vorhandener oder aktiver Kanäle

UCC User Channel Comment

Kommentar eingeben

Syntax: UCCp1(x)

Parameter: p1: Beliebige Zeichenfolge "____", max. 45 Zeichen

Hinweis: Wenn der Benutzer einen Kanalnamen und -kommentar

eingeben möchte, die beide im UCC-String gespreichert werden, empfiehlt es sich, sie durch ein $_{n}$; u zu trennen.

Beispiel: Um den Kanalnamen "Kanalname_1" und den

Kommentar "Kanalkommentar_1" im Verstärker zu speichern,

senden Sie den Befehl:

UCC, Kanalname_1; Kanalkommentar_1"

Alle ausgewählten Unterkanäle (PCS und SPS) erhalten diesen Namen!

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

UCC? User Channel Comment Query

Kommentar ausgeben

Syntax: UCC?(x)
Parameter: keine

Antwort: "__(String)__"(y): gespeichert in einer Zeichenfolge mit Anfüh-

rungszeichen am Anfang und am Ende

Hinweis: Alle Kommentare aller ausgewählten Unterkanäle aller

ausgewählten Kanäle (PCS und SPS) werden zurückgegeben! Alle Namen (und Kommentare) werden durch ":" getrennt,

nicht durch ","!!!.

Alle Kommentare aller ausgewählten Unterkanäle aller ausgewählten Kanäle (PCS und SPS) werden zurückgegeben! Alle Kommentare werden durch ": "getrennt, nicht durch " "!!!

Engineering Unit

Physikalische Einheit eingeben

Syntax 1: EUNp1(x)

Parameter: p1: "UnitString"

Syntax 2: EUNp1(x)

Parameter: p1: Einheitencode

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

EUN?

Engineering Unit Query

Physikalische Einheit ausgeben

Syntax 1: EUN?(x) Parameter: keine

q1(y): "UnitString" Antwort:

Syntax 2: EUN??(x) Parameter: keine

q1(y): Einheitencode Antwort:

Unterstützte Einheiten

Code	Name	ASCII-Name	
	// Winkel (Radiant)		
100	"rad"	""	
101	"radian"	""	
102	,0" "	"deg"	
103	"%degrees"	nn	
	// Länge		
300	"m"	""	
301	"µm"	"um"	
302	"mm"	""	
303	"cm"	nn	
304	"dm"	nn	
305	"km"	""	
306	"inch"	"in"	
307	"feet"	nn	
308	"yard"	nn	
309	"mile"	""	
	// Masse		
400	"kg"	nn	
401	"g"	nn	
402	"t"	nn	
403	"kt"	nn	
404	"ons"	nn	
405	"bs"	nn	

Code	Name	ASCII-Name
	// Zeit	
500	"s"	nn
501	"ms"	nn
502	"µs"	"us"
503	"min"	nn
504	"h"	nn
505	"days"	nn
	// Strom	
600	"A"	nn
601	"A rms"	nn
602	"mA"	nn
603	"μΑ"	"uA"
604	"mA rms"	nn
605	"μA rms"	"uA rms"
	// Temperatur	
700	"K"	nn
701	"°C"	"degC"
702	"°F"	"degF"
703	"ºRank"	"degRank"
704	"°R"	"degR"
	// Spannung/Empfind	lichkeit
1000	"V/V"	nn
1001	"mV/V"	nn
1002	"μV/V"	"uV/V"
	// Spannung	
1100	"V"	nn
1101	"mV"	nn
1102	"μV"	"uV"
1103	"V rms"	nn
1104	"mV rms"	nn
1105	"μV rms"	"uV rms"

Code	Name	ASCII-Name
	// Widerstand	
1200	"Ohm"	nn
1201	"kOhm"	nn
1202	"MOhm"	nn
1203	"mOhm"	nn
	// Induktivität	
1300	"H"	nn
1301	"mH"	nn
1302	"μH"	"uH"
1303	"nH"	nn
	// Kapazität	
1400	"F"	nn
1401	"mF"	nn
1402	"μ F "	"uF"
1403	"nF"	nn
1404	"pF"	nn
		A K mol cd
1500	"C"	nn
1501	"nC"	nn
1502	"pC"	nn
	// Frequenz	
1600	"Hz"	nn
1601	"kHz"	nn
1602	"MHz"	nn
1603	"1/s"	пп
1604	"mHz"	nn
	// Rotationsgeschwin	digkeit
1700	"radian/s"	nn
1701	"U/min"	nn
1702	"rpm"	nn

Code	Name	ASCII-Name	
1703	"1/min"	nn	
		s A K mol cd	
1800	"W"	""	
1801	"mW"	nn	
1802	"kW"	nn	
1803	"MW"	nn	
1804	"GW"	nn	
	// Kraft		
1900	"N"	nn	
1901	"kN"	nn	
1902	"MN"	nn	
1903	"kp"	nn	
1904	"kgf"	nn	
1905	"lb"	nn	
1906	"GN"	nn	
	// Druck		
2000	"Pa"	""	
2001	"bar"	nn	
2002	"mbar"	nn	
2003	"kbar"	nn	
2004	"pas"	nn	
2005	"hPa"	nn	
2006	"kPa"	nn	
2007	"psi"	nn	
2008	"N/mm²"	"N/mm2"	
2009	"N/m²"	"N/m2"	
2010	"N/cm²"	"N/cm2"	
	// Energie		
	// Drehmomen	t	
2101	"Nm"	nn	
2100	"J"	nn	

Code	Name	ASCII-Name	
2102	"kNm"	nn	
2103	"MNm"	nn	
2104	"ftlb"	nn	
2105	"inlb"	nn	
2106	"GNm"	nn	
	// Torsion		
2200	"Nm"	nn	
2201	"Nm/radian"	nn	
2202	"oz-in"	nn	
	// Dehnung		
2300	"m/m"	nn	
2301	"μm/m"	"um/m"	
2302	"strain"	nn	
2303	"mm/m"	nn	
	// Geschwindigk	eit	
2400	"m/s"	nn	
2401	"km/h"	nn	
2402	"mph"	nn	
2403	"fps"	nn	
2404	"m/h"	nn	
	// Beschleunigur	ng	
2500	"m/s ² "	"m/s2"	
2501	"ga"	nn	
2502	"mm/s²"	nn	
// Dichte			
2700	"kg/m³"	"kg/m3"	
2701	"g/l"	nn	
	// Durchfluss		
2800	"m³/s"	"m3/s"	

Code	Name	ASCII-Name	
2801	"l/min"	"l/mn"	
2802	"m³/h"	"m3/h"	
2803	"gpm"	nn	
2804	"cfm"	nn	
2805	"l/h"	nn	
2806	"l/s"	nn	
	// Quoten		
2900	"%"	nn	
2901	"%0"	nn	
2902	"ppm"	nn	
	// Temperaturdr	ift	
3000	"%/°C"	"%/degC"	
3001	"%o/°C"	"%o/degC"	
3002	"ppm/°C"	"ppm/degC"}	
	// Numerische We	erte	
3100	"lmp"	nn	
3101	"klmp"	nn	
	// Allgemeine physikalisch	ne Einheiten	
	// rmkgsA	K mol cd	
5001	"%/decade"	nn	
5002	"dB"	nn	
5003	" / "	nn	
5004	"m³/m³"	"m3/m3"	
5005	"m ³ "	"m3"	
5006	"mm²"	"mm2"	
5007	"kg/s"	nn	
5008	"mole/l"	""	
5009	"mole/m³" "mole/m3"		

Code	Name	ASCII-Name
5010	"N/m"	nn
5011	"RH"	nn
5012	"V/(m/s²)"	"V(m/s2)"
5013	"V/C"	nn
5014	"V/N"	nn
5015	"V/Pa"	nn
5016	"W/°C"	"W/degC"
100000	"UserDefined"	"usr"

ESR?

Read status register

Standard-Statusregister lesen

Standard-Ereignisstatusregister Fehlerstatusregister ausgeben

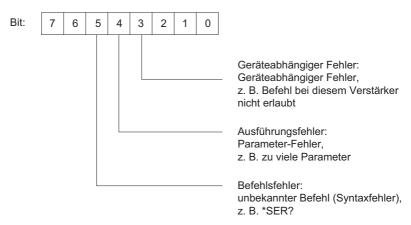
Syntax: ESR?p1 (x)

Parameter: keine

Auswirkung: Die Inhalte des Standard-Ereignisstatusregisters (ESR) werden

in ihrer dezimalen Entsprechung ausgegeben. Das Standard-

Ereignisstatusregister (ESR) wird gesetzt, wenn


Kommunikationsfehler auftreten. Verschiedene Fehlerursachen

setzen verschiedene Bits, sodass Fehler genau identifiziert

werden können.

Antwort: q1(y)

q1: 8, 16 oder 32 (oder Summe)

Alle anderen Bits sind nicht belegt.

Ausführungsfehler: z. B.: Befehl nicht für ausgewählten Kanal (Karte) gültig.

ESR wird nach dem Lesen gelöscht.

Response: p1:1

q1(y)

q1: Summe der binären Darstellung einzelner Statusbits von

Status 1, siehe nachfolgende Tabelle

Status 1	Binärwert	Bemerkungen
FACTORYSETTINGS_ERROR	1	Werkskalibrierung für PMX-Gehäuse beschädigt (nicht Messkarten!)
SYNC_MASTER	2	Bitsatz: Bit des Synchronisations- Masters gelöscht: Synchronisations- Slave
SYNCMESSAGE_ERR	4	fehlende oder ungültige Synchronisations-Meldungen
SYNC_UNLOCKEDSLAVE_ERR	8	stabile Verbindung nicht möglich, Regler kann Synchronisation mit Master nicht durchführen
ALIVE	16	Umschaltung erfolgt mit ca. 1 Hz
POWEROVERLOAD	32	Stromversorgung ist an nicht näher angegebener Stelle überlastet

Status 1	Binärwert	Bemerkungen
CAT_BUF_OVERRUN	64	Überlauf des
		"Catman"-Schnittstellenpuffers
		(TSV) ==> Messwertstrom unterbro-
		chen
SYSTEM_NOT_READY	128	z.B. Änderung des Parametersatzes
		im Gange oder fehlgeschlagen
DSP_OVERRUN	256	z.B. zu viele berechnete Kanäle

MCS

Measuring Channel Select

Kanalauswahl für die aufzuzeichnenden Kanäle auswählen

Mit diesem Befehl werden die aufzuzeichnenden Kanäle ausgewählt. MCS kann nicht für die Auswahl während der Datenerfassung verwendet werden. In diesem Fall wird der Befehl mit einem "?" quittiert. Der Abfragebefehl ist auch während der Aufzeichnung möglich.

Syntax: MCS p1,.., pxx (x)

Parameter: p1,.., pxx 1,.., xx Kanalauswahl

MCS 0 (x) wählt alle vorhandenen Kanäle aus MCS (x) hebt die Auswahl aller Kanäle auf

Hinweis: Die Kanäle 17, 18 und 19 sind die internen Zeitstempel. Der

Zeitstempel ist ein 6-Byte-Zähler mit einer Geschwindigkeit von ca. 153640 Hz. Die Zeitkanäle 17, 18 und 19 tauchen nicht in den Befehlen PCS?/SPS? auf. Zeiten haben keine Unterka-

nal-Darstellungen (Befehl SMS).

Die binären ("Mess-") Daten haben eine Länge von 8 Byte,

wobei die höchstwertigen zwei Bytes Null sind.

Zeitdaten werden stets am Ende einer Messwertzeile platziert.

Es gibt eine implizite Verbindung zwischen der Messratengruppe und den drei Zeitkanälen:

Kanal 17: Messratengruppe 0 Kanal 18: Messratengruppe 1 Kanal 19: Messratengruppe 2

Hinweis: Die Antwort ist abhängig vom Befehl SRB. Sehen Sie sich auch

die Befehle STF und NTP an. Die Multi-I/O-Karte PX878 kann hier nicht ausgewählt werden. Sie erzeugt keine Messwerte.

MCS?

Measuring Channel Select Query

Kanalauswahl für die aufzuzeichnenden Kanäle ausgeben

Syntax: MCS?p1(x)

Parameter: p1:Ausgabemodus:

0 Vorhandene Kanäle, z. B. 1,2,3,4(,17,18,19)

1 Aktive Kanäle

Antwort: q1,.., q19 Liste der vorhandenen oder aktiven Kanäle

SMS

Subchannel Measurement Select

Unterkanalmaske für die Aufzeichnung wählen

Dieser Befehlt stellt die Unterkanal-Auswahlmaske für die Aufzeichnung ein. Die einzustellenden Kanäle (= PMX-Steckplätze) sollten bereits mit PCS ausgewählt sein.

Syntax: SMS p1,..., pxx(x)

Parameter: p1,.., pxx 1,.., Unterkanalauswahl

SMS 0 (x) wählt alle vorhandenen Unterkanäle aus

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

SMS?

Subchannel Measurement Select Query

Unterkanalmaske für die Aufzeichnung abfragen

Syntax: SMS?p1(x)

Parameter: p1:Ausgabemodus

0 Vorhandene Unterkanäle1 Ausgewählte Unterkanäle

Antwort: q1,..., qxx Liste vorhandener oder aktiver Kanäle

MSS

Subchannel Measurement Select

Messsignalauswahl für die aufzuzeichnenden Kanäle

auswählen

Dieser Befehl wählt die aufzuzeichnenden Signale der mit PCS/SPS ausgewählten Kanäle aus. Es können unterschiedliche Signalkombinationen für die verschiedenen Kanäle ausgewählt werden. Insbesondere ist es möglich, mehr als ein Signal für jeden Unterkanal aufzuzeichnen.

Syntax: MSS p1, p2, p3, p4 (x)

p2...p4 sind optional.

Bei Aufruf ohne Parameter werden die ausgewählten Unterkanäle auf brutto eingestellt.

p1p4	Aufzuzeichnendes Signal	
214	Brutto, dynamisch	
204	Min. Wert, virtueller Kanal	

p1p4	Aufzuzeichnendes Signal			
205	Max. Wert, virtueller Kanal			
217	Max Min. (Spitze-Spitze), virtueller Kanal			

Hinweis: Dieser Befehl kann die Menge der zu berechnenden und

übertragenden Daten drastisch erhöhen. Nicht alles ist

möglich.

Da der PMX eine interne Multi-Client-Softwarearchitektur hat und catman[®] "nur" einer dieser Clients ist, müssen die verfügbaren Signale (außer Brutto) auf der oberen Ebene erstellt werden. Andernfalls sind diese Signale nicht verfügbar.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

MSS2 Measuring Signal Select Query

Messsignalauswahl für die aufzuzeichnenden Kanäle

ausgeben

Syntax: MSS?(x)
Parameter: keine

MRG

MRG?

Antwort: list[i]: list[j]:...: list[k]

list [x]

Beispiel: 214,204:214,205:217....

Measurement Rate Group

Messsignalauswahl für die aufzuzeichnenden Kanäle

Dieses Signal ordnet die Messratengruppe einem ausgewählten Kanal oder Unterkanal (PCS/SPS) zu. Bis zu 3 synchrone Messratengruppen werden unterstützt. Die Messwerte der verschiedenen Gruppen werden in separaten FIFO-Pufferspeichern gespeichert und müssen separat über die Schnittstelle ausgelesen werden.

Syntax: MRG p1,p2,p3 (x)

Parameter: p1: 0..2 Messratengruppe

p2: 0..2 Messratengruppe (optional) p3: 0..2 Messratengruppe (optional)

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

Measurement Rate Group Query

Messsignalauswahl für die aufzuzeichnenden Kanäle

ausgeben

Syntax: MRG? (x)
Antwort: q1(y)

q1: Messratengruppe

Beispiel: MrqOfSubSignal11: MrqOfSubSignal12: MrqOfSubSignal21:

MrqOfSubSignal22 ...

NTP Network Time Parameter

Stellt die IP-Adresse auf dem NTP-Server in

Punktschreibweise oder seinen Namen (als Zeichenfolge) ein.

Syntax: NTP p1 (x)

Parameter: p1: IP-Adresse oder Name des NTP-Servers: z. B.

172.19.178.12 oder "172.19.178.12" oder

"ntp.devel.hbm.com"

Network Time Parameter Query

Stellt die IP-Adresse auf dem NTP-Server in

Punktschreibweise oder seinen Namen (als Zeichenfolge) ein.

Syntax: NTP? (x)

Parameter: p1: ist optional

p1 fehlt oder ist 0: NTP server aufrufen

p1 =1; Genauigkeitsinformationen als Zeichenfolge

Antwort: $f \ddot{u} r p 1 = 0$ (oder fehlendes p1):

q1 (,q2,q3..)(y)

q1 ...: Verwendete NTP-Server als Zeichenfolgen, durch ","

getrennt

Note: Diese Abfrage antwortet auf den (die) derzeit verwendeten

NTP-Server. Dabei kann es sich um (einen) andere(n) Server handeln als denjenigen, der zuvor mit dem NTP-Befehl definiert wurde. Dieser Fall kann eintreten, wenn ein DHCP-Server einen

anderen NTP-Server definiert.

Internal Channel Recordingrate

Interne Kanal-Messrate

Dieser Befehl wird zum Einstellen von (nur) einer Messrate pro Gruppe genutzt. Eine zweite Messrate in einer Gruppe wird nicht unterstützt.

Syntax: ICR p1, p2(x)

Parameter: p1:Messrate 1, siehe unten stehende Ratenliste

p2: 0, 1, 2; Messratengruppe

Wenn Parameter p2 weggelassen wird, betrifft der Befehl die Messratengruppe 0.

ICR

Status	Wert	Bemerkungen
1 Hz	6300	
2	6301	
5	6302	
10	6303	
20	6326	
25	6304	
50	6305	
75	6307	
100	6308	
150	6309	
200	6310	
300	6311	
600	6313	
1200	6315	
2400	6317	Standard
4800	6319	
9600	6320	
19200	6345	
38400	6346	

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

ICR?

Internal Channel Recordingrate Query

Interne Kanal-Messrate ausgeben

Syntax: ICR? p1(x)

Parameter: p1: Messratengruppe 0, 1, 2

Antwort: q1 (y) Messrate

Hinweis: Wenn Parameter p1 weggelassen wird, betrifft der Befehl die

Messratengruppe 0.

TSV

Transient Setup Values

Dieser Befehl definiert und startet die Datenerfassung.

Syntax: TSVp1 (x)

Parameter: p1: 0, 1,..,N Anzahl der in einer einzigen Messung zu

messenden Wertzeilen:

- 1...N -> Max. FIFO-Größe 15 MB pro Messratengruppe 0 bedeutet unendlich. -> Standard-FIFO-Größe 5 MB pro Messratengruppe
- -1 bedeutet unendlich bei FIFO-Größe von 1 Zeile.

Dies ermöglicht dem Benutzer *EINE* Zeile (RMB?1,...) mit den *neusten* Messdaten zu erhalten, ohne permanent eine neue Messung zu beginnen. Noch nicht vollständig geprüft, ob die Werte der verschiedenen Unterkanäle exakt gleichzeitig erfasst werden.

Hinweis: Die Antwort ist abhängig vom Befehl SRB. Löscht Statusbit

"Nachrichtenüberlauf", siehe TSV?-Anfrage

TSV? Transient Setup Values Query

Dieser Befehl definiert und startet die Datenerfassung.

Syntax: TSV? p1(x)

Parameter: p1: Messratengruppe; 0, 1, 2

Antwort: q1, q2, q3 (y)

q1: Anzahl der Messzeilen im FIFO-Puffer, die nicht gesendet

wurden.

q2: Trigger-Status der aktuellen Messung

2: Messung aktiv (warten auf Ende)

3: Messung beendet (Standard)

q3: Statusbits

Bit 0, (Wert=1): FIFO-Pufferüberlauf, wird durch nächsten TSV-Befehl gelöscht

Bit 1, (Wert=2): noch nicht verwendet Bit 2, (Wert=4): noch nicht verwendet Bit 3, (Wert=8): noch nicht verwendet Bit 4, (Wert=16): noch nicht verwendet

STP Stop

Messwertausgabe und Datenerfassung beenden

Syntax: STP(x)
Parameter: keine
Antwort: keine

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

Output Measuring Pointer

Messwertpuffer Ausgabepointer

Dieser Befehl wird verwendet, um den Lesezeiger im Systemspeicher (FIFO-Speicher, in dem Messwerte aufgezeichnet werden) zu positionieren. Der Benutzer muss wissen, was zu tun ist. Es gibt kein Fehlermanagement!

Syntax: OMP p1, p2 (x)

OMP

Parameter: p1: -N,..N, Offset zum Bewegen des Lesezeigers: -(max-FIFO-

Zeilen -1)...max. FIFO-Zeilen -1 max. FIFO-Zeilen ab

TSV-Befehl

P2: 0,..,2 Messratengruppe 3 asynchroner FIFO

Wenn die Messratengruppe (p2) nicht angegeben ist, ist die Messratengruppe 0 betroffen.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

OMP? Output Measuring Pointer Query

Messwertpuffer Ausgabepointer abfragen

Syntax: OMP? p1(x)

Parameter: p1: Messratengruppe 0,..,2

Antwort: q1, q2 (y)

q1: Verfügbare (lesbare) Zeilen, aktueller Lesezeiger bis

aktueller Schreibzeiger

q2: Datenaufzeichnungsstatus

0 Datenerfassung wird nicht ausgeführt1 Datenerfassung wird ausgeführt

Wenn die Messratengruppe nicht angegeben ist, ist die Messratengruppe 0 betroffen.

MBF

Measuring Buffer Format

Ausgabeformat

Dieser Befehl legt das RMB-Ausgabeformat fest. Der Abfragebefehl gibt das aktuell eingestellte Format zurück.

Syntax: MBFp1,p2(x)

Parameter: p1:

1257 4 Bytes binär (Float) INTEL (physische Größe), andere

Formate werden nicht unterstützt

Bei Gleitkommaformaten ist ein Fehler (Überlauf/

Kalibrierungsfehler) durch 2e20 codiert.

p2: Messratengruppe 0,..,2

Wenn Parameter p2 weggelassen wird, betrifft die Einstellung

alle Messratengruppen.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

MBF?

Measuring Buffer Format Query

Ausgabeformat ausgeben

Syntax: MBF? p1(x)

Parameter: p1: Messratengruppe 0,..,2

Antwort: q1(y)

q1: Ausgabeformat

Wenn Parameter p1 weggelassen wird, erhalten Sie das Ausgabeformat von Messratengruppe 0.

RMB?

Read Measuring Buffer Query

Dieser Befehl dient zum Ausgeben der im Systemspeicher aufgezeichneten Messwerte.

Für die Ausgabe wird die Zeichenkette "#0" (2 Bytes) vor den Messwerten platziert (nur in der ersten Zeile); anschließend können so viele Werte folgen wie verfügbar sind oder wie angefordert wurden. Jeder Wert hat eine Größe von 4 Bytes, und das Format des Werts ist "Float".

Wenn mehr Messwerte angefordert wurden als aktuell verfügbar sind, bleibt die Ausgaberoutine im Wartezustand, bis mehr Messwerte ankommen. CR LF wird einmal als Abschlusszeichen nach der letzten Zeile ausgegeben. Das Ausgabeformat wird mithilfe des Befehls MBF festgelegt. Da dies stets von einer Ausgabe gefolgt wird, selbst wenn weniger Messwerte vorhanden sind als angefordert, sollten Sie vor der Nutzung des Befehls RMB? den Befehl OMP? verwenden, um herauszufinden, wie viele Messwertzeilen vorhanden sind.

Syntax: RMB? p1,p2,p3(x)

Parameter: p1: Anzahl auszugebender Messwertzeilen

p2: Ausgabemodus

6400 ab dem Beginn des gesamten Messspeichers (Übertrag des Lesezählers), nicht unterstützt

6406 ab dem aktuellen Lesezähler, nicht unterstützt

6407 ab dem aktuellen Lesezähler; Freigabe von allem Vorherigen, nicht unterstützt 6408 Lesen der neusten Werte (Lesezeiger bleibt unverändert), nicht unterstützt 6409 ab dem aktuellen Lesezeiger; Lesezeiger um p1 Zeilen vorwärts bewegen

p3: Messratengruppe 0,..,2

Wenn die Messratengruppe nicht angegeben ist, ist die Messratengruppe 0 betroffen.

RMV?

Read Current Measurement Value

Messdaten ausgeben.

Syntax: RMV? p1 (x) Parameter: p1 Signal

p1	Signal
214	Brutto
204	Min
205	Max
217	Spitze/Spitze

Wirkung: Der Befehl RMV? gibt wenn möglich das gewünschte Signal der

mit PCS und SPS ausgewählten Kanäle aus. Nicht jeder Kanaltyp unterstützt jeden Signaltyp. Wenn ein Kanal ausgewählt ist, der nicht den in Parameter p1 übermittelten

Signaltyp unterstützt, wird 2.0e20 angezeigt.

Die Signale Min, Max, Spitze/Spitze müssen auf der oberen Ebene "definiert/angelegt" werden (siehe Befehl "MSS"), wenn sie angezeigt werden sollen!

Andernfalls wird 2.0e20 zurückgegeben.

Wenn p1 weggelassen wird, werden Bruttowerte zurückgegeben.

Beispiel: PCS3,4(x) 'Kanäle 3 und 4 auswählen

O(y)

SPS1(x) 'Unterkanal 1 (von Kanälen 3 und 4) auswählen O(y)

RMV?214(x) 'Messwerte abrufen. 9.998,8.888(y)

Virtuelle Unterkanäle (Steckplatz 9 / Kanal 9) unterstützen die Untersignale Min, Max, Spitze/Spitze nicht.

Digitalwerte (Slot 10) und Analogausgangswerte (PX878) haben selbst keine Min.-/Max.-/Spitze-Spitze-Werte. Analogausgangswerte (PX878) werden ca. alle 0,5 Sekunden aktualisiert (2 Hz). Wenn dieser Befehl öfter aufgerufen wird, wird daher derselbe Wert ausgegeben. Falls die Signalquelle des Analogausgangs einen ungültigen Status aufweist, wird 2e20 ausgegeben (unabhängig von dem über die Web-GUI eingegebenen "ungültigen Signalwert"). Die Spannungspegel für PX878 entsprechen den berechneten Pegeln. Sie werden NICHT an den Ausgängen (nach-) gemessen!

SFC

Signal Filtering Characteristic

Grenzfrequenz und Filtercharakteristik

Definiert die Grenzfrequenz und die Filtercharakteristik für alle mit PCS und SPS ausgewählten Kanäle/Unterkanäle.

Syntax: SFCp1,p2(x)

р1	Filtercharakteristik laut Tabelle 1
p2	Grenzfrequenz laut Tabelle 2

Filtercharakteristik Wert		Bemerkungen	
Kein Filter	140	Nur virtueller Steckplatz 9	
Butterworth	141	Filter 6. Ordnung	
Bessel	142	Filter 6. Ordnung	

Tab. 21.1 Filtercharakteristik

In den folgenden Tabellen finden Sie die verfügbaren Grenzfrequenzen mit Bessel- oder Butterworth-Charakteristiken je nach Messkarte.

p1=141 / 142	Grenzfrequenz (Hz)			
914	0.1	Х	Х	Х
917	0.2	Х	Х	Х
921	0.5	Х	Х	Х
927	1	Х	Х	Х
931	2	Х	Х	Х
935	5	Х	Х	Х
941	10	Х	Х	Х
945	20	Х	Х	Х
949	50	Х	Х	Х
955	100	Х	Х	Х
958	200	Х	Х	Х
962	500	Х	Х	Х
969	1000	Х	Х	Х
973	2000	Х	Х	Х
976	3000	Х	-	Х
978	5000	-	-	X ¹⁾

p1=141 / 142	Grenzfrequenz (Hz)			
979	6000	-	-	X1)
1150	100000 ²⁾	Х	-	Х

Tab. 21.2 Filterfrequenzen

- Diese Grenzfrequenzen sind nur verfügbar, wenn der Parameter "Kanalaktualisierungsrate für Abtastung und Berechnung" (Browser-Benutzeroberfläche: Einstellungen -> System -> Gerät -> Systemoptionen) auf 38,4k eingestellt ist.
- 2) Dieser Wert bedeutet, dass das Digitalfilter mit "neutralen" Koeffizienten arbeitet und nur das analoge Anti-Aliasing-Filter aktiv ist. Die physische Grenzfrequenz kann von der Karte abhängig sein.

Virtuelle Unterkanäle (Steckplatz 9 / Kanal 9), digitale Unterkanäle (Steckplatz 10 / Kanal 10) und PX878 multi IO-card unterstützen keine Filter. Die Parameter p1, p2 (und p3) können definiert werden, dies wird jedoch ignoriert!

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

SFC? Signal Filtering Characteristic query

Grenzfrequenz und Filtercharakteristik ausgeben

Syntax 1: SFC?(x)
Parameter: keine
Antwort: g1.g2(y)

Antwort: q1,q2(y) q1 Filtercharakteristik q2 Grenzfrequenz

Z.B. 142,969:142, 969

Syntax 2: SFC??(x)
Parameter: keine

Antwort: q1,q2(y): Mögliche Filtercharakteristik

z. B. 141,142:141,142

Syntax 3: SFC?142,?(x)

Antwort: q1,...,qn(y): Verfügbare Bessel-Frequenzen

z. B

914,917,921,927,931,935,941,945,949,955,958,962,969,973,115

0:914,917...

Virtuelle Unterkanäle (Steckplatz 9 / Kanal 9), digitale Unterkanäle (Steckplatz 10 / Kanal 10) und PX878 multi IO-card unterstützen keine Filter. Abfrage gibt 140, 1150 zurück

Calibration Point

Kennpunkte des Aufnehmers (Eingang) eingeben

Betrifft alle ausgewählten Kanäle (PCS/SPS)

Syntax: CAPp1,p2,p3(x)

Parameter: p1: Punktanzahl (1 oder 2)

p2: Messsignal (Einheit abhängig vom Verstärker), wenn kein Eingangswert vorhanden ist, wird der aktuelle Messwert übernommen

p3: Anzeigewert

Wirkung: Die Eingangskennlinie wird durch 2 Punkte festgelegt. Das

Eingangssignal und der dazugehörige Anzeigewert müssen für jeden Punkt eingegeben werden. Dieser Befehl definiert auch die Skalierung der PX878. Das heißt die physikalischen (p2, von der Signalquelle) und elektrischen (p3, Ausgang in Volt)

Werte des Spannungsausgangs.

Virtuelle Unterkanäle (Kanal 9) unterstützen keine

Kalibrierungspunkte. Das Festlegen der Parameter p1, p2 und

p3 ist erlaubt, wird jedoch ignoriert!

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

CAP?

Calibration Point Query

Kennpunkte des Aufnehmers (Eingang) ausgeben

Eingangskennpunkte (Aufnehmer) aller ausgewählten Kanäle (PCS/SPS) ausgeben.

Syntax: CAP?<p1>(x)

Parameter: p1:Punktanzahl (1 oder 2)

Antwort: q1,q2,q3(y)

q1: Punktanzahl (1 oder 2)

q2: Messsignal (Einheit abhängig vom Verstärker)

q3: Wert in angezeigten Einheiten

Virtuelle Unterkanäle (Kanal 9) unterstützen keine Kalibrierungspunkte.

Antwort für p1=1: q2=0, q3=0. Antwort für p1=2: q2=100, q3=100.

CAL

Calibration

Verstärker kalibrieren

Verstärker kalibrieren, alle ausgewählten Kanäle (PCS/SPS). Gibt Kal-Option implizit frei. Die ACL-Einstellung wird NICHT geändert! Wird nur für PX455 unterstützt! Andere (Mess-)Karten geben "OK" (0) aus.

Syntax: CAL(x)

Parameter: keine

Hinweis: Bei allen CF-Brückenverstärkern löst dieser Befehl eine

Kalibrierung aus. Messwerte "flackern" mehrere Sekunden

lang.

Die Antwort ist abhängig vom Befehl SRB.

CAL?

Status of Calibration procedure

Status des Kalibriervorgangs ausgeben

Status des Kalibriervorgangs, alle ausgewählten Kanäle (PCS/SPS). Wird nur für PX455 unterstützt! Andere (Mess-)Karten geben "OK" (0) aus.

Syntax: CAL?(x)
Parameter: keine
Antwort: q1(y)

0	Autom. Kalibrierung wird nicht ausgeführt
1	Autom. Kalibrierung wird ausgeführt

z.B. zwei Karten mit je 4 Kanälen: 0,0,0,0,:1,0,1,1

ACL

Enable / Disable Autocal

Ein-/Ausschalten der Autokalibrierung

Automatischen Beginn der Kalibrierung aller ausgewählten Kanäle (PCS/SPS) aktivieren (Standard) oder deaktivieren. Die Kalibrierung wird dann ausgeführt, wenn der Sensor angeschlossen ist oder das Messsignal einige Sekunden lang übersteuert ist. Wird nur für PX455 unterstützt! Andere (Mess-)Karten geben "OK" (0) aus.

Syntax: ACLp1(x)

Parameter:

p1	Autokalibrierung
0	Aus
1	Ein

Hinweis: Im eingeschalteten (aktivierten) Zustand ist die automatische

Kalibrierung für Brücken oder brückenähnliche Sensoren (Potentiometer/LVTD) aktiviert. Ein Befehl ACL 0 bricht eine laufende Kalibrierungssequenz nicht ab. Er unterdrückt

lediglich einen weiteren Start.

Die Antwort ist abhängig vom Befehl SRB.

ACL?

Enable / Disable Autocal Query

Ausgabe des Autokalibrierzustandes

Alle ausgewählten Kanäle (PCS/SPS). Wird nur für PX455 unterstützt! Andere (Mess-)Karten geben "OK" (0) aus.

Syntax: ACL?(x) Antwort: q1(y):

q1	Autokalibrierung
0	deaktiviert
1	aktiviert

z. B. 0,0,0,0:1,1,1,1:0,0

AIS

Amplifier Input Signal

Verstärkereingangssignal auswählen

Verstärkereingangssignal auswählen. Wird nur für PX455 unterstützt. Für andere (Mess-) Karten wird der Befehl ignoriert. Sie geben "OK" (0) aus.

Syntax:

AISp1(x)

Parameter:

p1	Eingangssignal	Unterstützt
40	Internes Nullsignal	PX455
41	Internes Kalibriersignal	PX455
42	Messsignal	Alle Messkarten, virtuelle und digitale Kanäle
43	Referenzpunkt, nicht unterstützt	
46	Messsignal ohne Anregungspunkt, nicht unterstützt	

AIS?

Amplifier Input Signal Query

Verstärkereingangssignal ausgeben

Anforderung des Verstärkereingangssignals. Wird nur für PX455 unterstützt. Andere (Mess-) Karten geben 42 aus.

Syntax: AIS?(x)
Parameter: keine

Antwort: q1(y): Eingangssignal

Clear Peak Value

Spitzenwertspeicher löschen

Virtuelle Unterkanäle (Steckplatz 9 / Kanal 9), digitale Unterkanäle (Steckplatz 10 / Kanal 10) und PX878 mulit IO-card unterstützen keine Spitzenwerte.

Betrifft alle ausgewählten Kanäle (PCS/SPS)

Spitzenwertspeicher löschen

Syntax: CPVp1(x)

Parameter:

p1	Löscht
ohne	Spitzenwertspeicher 1, Max
1	Spitzenwertspeicher 1, Max
2	Spitzenwertspeicher 2, Min
3	Spitzenwertspeicher 3, Spitze-Spitze

Hinweis: Beim Löschen werden die Spitzenwertspeicher (Min oder Max)

auf den aktuellen Messwert eingestellt. Spitze-Spitze wird auf 0,0 eingestellt. Spitze-Spitze hat eigene Min/Max-Speicher! Die Spitzenwertsignale müssen vorher auf oberer Ebene parametriert werden. Andernfalls sind sie nicht verfügbar.

Virtuelle Unterkanäle (Kanal 9) unterstützen keine

Spitzenwerte.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

HPV

Hold Peak Value

Aktualisierungsstatus der Spitzenwertspeicher

Betrifft alle ausgewählten Kanäle (PCS / SPS). Spitzenwertspeicherung aussetzen/aktivieren.

Aktualisierung des Spitzenwertspeichers aussetzen/aktivieren

Syntax: HPVp1,p2(x)

Parameter: p1: Spitzenwertspeicher 1 (Max), 2 (Min) oder 3 (Spitze-Spitze)

p2=1: Aktualisierung aussetzen

p2=0: Aktualisierung aktivieren (Standard)

Bei jedem Einschalten wird der Status auf "Aktualisierung aktivieren" eingestellt.

Virtuelle Unterkanäle (Steckplatz 9 / Kanal 9), digitale Unterkanäle (Steckplatz 10 /

Kanal 10) und PX878 mulit IO-card unterstützen keine Spitzenwerte.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

HPV?

Hold Peak Value Query

Aktualisierungsstatus des Spitzenwertspeichers aller

ausgewählten Kanäle (PCS/SPS) auslesen

Syntax1: HPV?p1(x)

Parameter: p1: Spitzenwertspeicher 1 (Max), 2 (Min) oder 3 (Spitze-Spitze)

Antwort: q1,q2(y):

q1: angeforderter Spitzenwertspeicher

q2: 1: Aktualisierung ausgesetzt

0: Aktualisierung aktiviert: z. B. für Max (p1=1) 1,111,0111,1

🗓 bedeutet, dass dieser Unterkanal (zwischen den beiden:) keine Max-, Min- oder

Spitze-Spitze-Werte hat

Syntax 2: HPV??(x)

(y): verfügbare Spitzenwertspeicher: z. B. 1,2,3:1,2::1: bedeutet, dass dieser

Unterkanal (zwischen den beiden 1) keine Spitzenwerte hat

Der Befehl gibt den Status des Spitzenwertspeichers zurück, der durch den Befehl HPV eingestellt werden kann.

Virtuelle Unterkanäle (Steckplatz 9 / Kanal 9), digitale Unterkanäle (Steckplatz 10 / Kanal 10) und PX878 mulit IO-card unterstützen keine Spitzenwerte.

SAD

Sensor Adaption

Aufnehmeranpassung für alle ausgewählten Kanäle (PCS/SPS)

auswählen

Syntax: SAD p1,p2,p3(x)

p1	Speisespannung (oder -strom), siehe <i>Tab. 21.3 und Tab. 21.6</i> für PX460
p2	Aufnehmertyp, siehe <i>Tab. 21.4</i> und <i>Tab. 21.7</i> für PX460
р3	Empfindlichkeit (optional), siehe <i>Tab. 21.5</i> (für PX460 nicht verwendbar)

Status	Wert	Bemerkungen	Befehl
Keine Speisung	10	PX401	
1 V	11	Nicht unterstützt	
1,25 V	12	Nicht unterstützt	

Status	Wert	Bemerkungen	Befehl
2,5 V	13	PX455	
5 V	14	Nicht unterstützt	

Tab. 21.3 Brückenspeisespannung (p1)

Status	Wert	Bemerkungen
Vollbrücke	350	PX455
Halbbrücke	351	PX455
Viertelbrücke	352	
DMS-Vollbrücke	353	
DMS-Halbbrücke	354	
DMS-Viertelbrücke	355	
Induktive Vollbrücke	356	PX455 (= VB 100 mV/V)
Induktive Halbbrücke	357	PX455 (= HB 100 mV/V)
Vollbrücke LOW-Pegel	358	
Halbbrücke LOW-Pegel	359	
Vollbrücke HIGH-Pegel	360	
Halbbrücke HIGH-Pegel	361	
DMS-Vollbrücke, 120 Ohm	362	
DMS-Vollbrücke, 350 Ohm	363	
DMS-Vollbrücke, 700 Ohm	364	
DMS-Halbbrücke, 120 Ohm	365	
DMS-Halbbrücke, 350 Ohm	366	
DMS-Halbbrücke, 700 Ohm	367	
LVDT	380	PX455 (= HB 1000 mV/V)
Potenziometer	385	PX455 (= HB 1000 mV/V)
DC 75 mV	425	
DC 10 V	426	PX401
DC 20 mA	427	PX401
DC 60 V	433	
DC 4 20 mA	435	PX401
Ladung 0,1 nC	571	

Status	Wert	Bemerkungen
Ladung 1 nC	572	
Ladung 10 nC	573	
Ladung 100 nC	574	
Virtuelle Sensor	575	PMX

Tab. 21.4 Aufnehmertyp (p2)

Status	Wert	Bemerkungen
4 mV/V	778	PX455
100 mV/V	774	PX455
1000 mV/V	776	PX455

Tab. 21.5 Aufnehmerempfindlichkeit (p3)

SAD-Parameter für PX460

p1:

Wert	Eingangstyp
23	Direkt (digitale Verbindung, differentiell oder einpolig)
24	Indirekt (nur für Frequenzmessung)

Tab. 21.6 Eingangstyp für PX460

p2:

Status	Aufnehmertyp
520	Frequenz (direkt oder induktiv)
525	Impulszähler (nur direkt)
580	SSI (nur direkt)
527	PWM (nur direkt)

Tab. 21.7 Aufnehmertypen für PX460

Virtuelle Unterkanäle (Kanal 9) verwenden Werte p1=10, p2=575. Wenn andere Werte eingestellt sind, wird dies ignoriert (Antwort OK).

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

SAD Parameters for PX878

P2:

Status	Wert	Bemerkungen
± 10 V	290	PX878
-20 20 mA	291	nicht unterstützt
4 20 mA	291	nicht unterstützt

Tab. 21.8 Ausgangstyp für PX878 (p2)

Virtuelle Unterkanäle (Slot 9 / Kanal 9) und digitale Unterkanäle (Slot 10 / Kanal 10) verwenden Werte p1=10, p2=575. Wenn andere Werte eingestellt sind, wird dies ignoriert (Antwort OK).

PX878 verwendet Werte p1=10, p2=290. Die Einstellung anderer Werte wird ignoriert und "?" als Fehler ausgegeben.

Note: Die Antwort ist abhängig vom Befehl SRB.

CVD3	Sensor Adaption Query
CALL	ochisor Adaption query

Eingestellte Aufnehmeranpassung für alle ausgewählten

Kanäle (PCS/SPS) ausgeben

Syntax 1: SAD?(x)
Parameter: keine
Antwort: q1,q2(y)

q1	Speisespannung (oder -strom), siehe SAD-Befehlstabellen Tab. 21.3 bis Tab. 21.6
q2	Aufnehmertyp siehe SAD-Befehlstabelle Tab. 21.7
р3	Empfindlichkeit (-1 falls nicht unterstützt/benötigt), siehe <i>Tab. 21.4</i>

z. B. PX401: 10,426,-1:10,427,-1:....

Syntax 2: SAD??(x)
Parameter: keine

Antwort: q1,...qn(y): mögliche Speisespannung oder Ähnliches gemäß

Tab. 1 bis 4 (SAD-Befehl)

z. B. PX401: 10,10,10:10,10,10:0

Syntax 3: SAD?,?(x)

Antwort: q1..qn(y): möglicher Aufnehmertyp gemäß Tab. 21.4

(SAD-Befehl)

z. B. PX401: 426,427,435: 426,427,435:...

Virtuelle Unterkanäle (Kanal 9) geben die Werte q1=10, q2=575 zurück.

Set Additional Function, nur verfügbar für PX460

Parameter für Zähler

Nur der 2. und der 4. Unterkanal können konfiguriert werden (SPS2 / SPS4). Der 1. und der 3. Unterkanal sind fest für die Frequenzmessung mit direktem (digitalem) Eingang zugewiesen.

Der 1. und der 2. Unterkanal verwenden dieselben Einstellungen für Glitch-Filter, Typ des Digitaleingangs und Abschluss. Der 3. und der 4. Unterkanal sind in gleicher Weise miteinander verknüpft.

Syntax: SAF p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11(x)

p2...p11 sind optional

p1	Glitch-Filter	0: Aus / 0,082,	Entfernt Pulsweiten < (p1) µs
		1, 10, 100: Ein	
p2	Typ des Digitalein- gangs	0: differentiell 1: einpolig	Differentieller oder einpoliger Digitaleingang (negativer Eingang auf "mittlere" Spannung eingestellt), Standardwert ist 0
р3	Abschluss	0: kein	Elektrischer Abschluss für Betrieb mit differentiellem Eingang
		Abschluss	Standardwert ist 0
		1: Abschluss- widerstände aktiv	
p4	Sensortyp ist Zähler	525	Definiert Bedeutung und Anzahl folgender Parameter
р5	F1+F2	0: Aus /	Signal F1+F2 wird bewertet
		1 (F2=90deg),	
		2 (F2=dir): Ein	
p6	Auflösungs- vervierfa- chung	0: Aus / 1: Ein	Bewertet nur eine oder alle Flanken

р7	physicher Nullindex- Eingang	0: Aus / 1 Ein	Aktiviert Hardware-(Null-)Eingang. Bei EIN wird bei (jedem) Nullindex-Impuls das Zählerergebnis auf p10 gesetzt.
p8	Faktor	0: Aus (deaktiviert) / 1,2,3,4: Ein	Aktiviert automatische Rücksetzung des Zählers nach p8 Umdrehungen (p8 * p9 Impulse)
p9	Impulse pro Umdrehung	0: Aus / 116000: Ein	Bei Ein wird der Zähler auf null gesetzt, nachdem ein Zählergebnis von p9 erreicht ist. Ein physischer Nullimpuls (p7) kann das Zählerergebnis ebenfalls zurücksetzen. Üblicherweise werden diese Möglichkeiten miteinander kombiniert.
p10	Offset in Impulsen	016000	Rücksetzwert des Zählers, normalerweise nicht größer als p9
p11	Richtungs- umkehr	0: Standard 1: umgekehrt	Kehrt die Zählrichtung um
p12	Interpolation	0: OFF 1: ON	Funktioniert ähnlich wie ein Filter. Ist nützlich für Signale mit langsamen Impulsen

Hinweis:

Dieser Befehl setzt automatisch den aktuellen Zählerwert auf null (NICHT p10!) zurück.

Zum Zurücksetzen ds Zählers ohne Änderung der aktuellen Einstellungen (Parametrierung wurde davor durchgeführt) wird nur p1 benötigt.

Erklärungen:

Glitch-Filter, p1

Eingangssignale mit Pulsweiten $< x \mu s$ werden nicht bewertet. Standardswert ist 1 (1 μs).

F2-Bewertung, p5

Aktiviert Erkennung und Bewertung der Drehrichtung mithilfe des zweiten Hardware-Eingangs. Standardwert ist 0 (Aus).

Auflösungsvervierfachung, p6

Alle benachbarten Flanken von F1 und F2 werden bewertet. Wenn F2 nicht angeschlossen oder die F2-Bewertung ausgeschaltet ist (p6=0), erfolgt eine Auflösungsverdoppelung. Standardwert ist 0 (Aus).

Nullindex-Eingang, p7

Hardware-Eingang für das Nullindex-Singal. Relevant für Inkrementalaufnehmer. Im Zählmodus setzt ein aktives Nullindex-Signal (elektrischer HIGH-Pegel) den Zählerwert auf p10. Standardwert ist 0.

Faktor, p8

Faktor für automatisches Rücksetzen des Zählerwerts auf p10 nach p8*p9 Impulsen (p8 Umdrehungen). Standardwert ist 0.

Impulse pro Umdrehung, p9

Wird für Drehgeber verwendet. Impulszählung für eine einzige Umdrehung. Wenn Auflösungsvervierfachung aktiviert ist, muss dieser Wert mit 2 oder 4 multipliziert werden. Standardwert ist 0.

Der "physische Nullindex" liefert die Nullstellung. Die Einstellung "Impulse pro Umdrehung" kennt den Maximalwert für den Übergang.

Null->Maximum. Die "Impulse pro Umdrehung" in Kombination mit dem "physischen Nullindex" können auch eine Differenz von einer viertel Impulsweite zwischen diesen beiden miteinander konkurrierenden Möglichkeiten zur Rücksetzung des Zählerwerts abgleichen (kompensieren).

Winkel-Offset in Impulsen, p10

Wert, den der Zähler erhält, wenn Nullindex aktiv ist. Standardwert ist 0.

Umkehrung der Zählrichtung, p11

Mit diesem Parameter ist es möglich, die Zählrichtung zu ändern. Standardwert ist 0.

Invertierung der Interpolation, p12

Funktioniert ähnlich wie ein Filter. Ist nützlich für Signale mit langsamen Impulsen zur Glättung des Messwerts. Standardwert ist 0.

Konfigurationsbeispiele

	Physischer Nullindex- Eingang, p7	Faktor, p8	Impulse pro Umdrehung, p9	
Lineare Konfiguration 1	0	0	0	Aufwärts Zählen (und abwärts, wenn p5<>0), keine Rücksetzung auf null oder p10
Lineare Konfiguration 2	1	0	0	Aufwärts Zählen (und abwärts, wenn p5<>0), Rücksetzung auf null oder p10, wenn physischer Nullindex aktiv ist
Rotations- konfiguration 1	0	0	116000	Aufwärts Zählen (und abwärts, wenn p5<>0), keine Rücksetzung auf null oder p10, kein Wrap-Around
Rotations- konfiguration 2	0	14	116000 / p8	Rücksetzung des Zählers alle p8 Umdrehungen, keine Verwendung von "physischem Nullindex", sondern automatischer Wrap-Around nach p8 Umdrehungen

	Physischer Nullindex- Eingang, p7	Faktor, p8	Impulse pro Umdrehung, p9	
Rotations- konfiguration 3	1	14	116000 / p8 *	Rücksetzung des Zählers alle p8 Umdrehungen, Verwendung von "physischem Nullindex" und "Impulsen pro Umdrehung" (p9); Zähler-Rücksetzung wird mit F1/F2-Impulsen synchronisiert
Rotations- konfiguration 4	1	0	116000, Wert wird jedoch ignoriert	Harte Rücksetzung mit "physischem Nullindex" auf Offset, "Impulse pro Umdrehung" (p9) wird NICHT verwendet, keine Fehlererkennung; besser Rotationskonfiguration 3 verwenden

^{*}Änderungen vorbehalten

Parameter für SSI-Aufnehmer

SAF p1,p2,p3,p4,p5,p6,p7(x) p2...p7 sind optional Syntax:

р1	Glitch-Filter	0: Aus / 0,082,	Entfernt Pulsweiten < (p1) µs
		1, 10, 100: Ein	
p2	Typ des Digitalein-	0: differentiell 1: einpolig	Differentieller oder einpoliger Digitaleingang (negativer Eingang auf
	gangs		"mittlere" Spannung eingestellt), Standardwert ist 0
р3	Abschluss	0: kein Abschluss	Elektrischer Abschluss für Betrieb mit differentiellem Eingang, Standardwert ist 0
		1: Abschluss- widerstände aktiv	

p4	Sensortyp ist SSI	580	Definiert Bedeutung und Anzahl folgender Parameter
р5	Codierung	0, 1	0: Grau-Code (Standard), 1: binär
р6	Bit-Länge	632	Bit-Länge des Aufnehmers (Auflösung), normalerweise 12,13,24,25 (Standard)
р7	Baudrate	15	Baudrate für Taktgeber des Aufnehmers: 1:10 kBit, 2:100 kBit (Standard), 3:200 kBit, 4:500 kBit, 5:1000 kBit

SAF?

Set Additional Function Query, nur verfügbar für PX460

Syntax: SAF? (x)

Antwort: q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11(y)

q4...q11 sind abhängig vom aktuell aktivierten Sensor

q1	Glitch-Filter	0: Aus / 0,082, 1,	alle Sensortypen
		10, 100: Ein	
q2	Typ des Digitaleingangs	0: differentiell	alle Sensortypen
		1: einpolig	
q3	Abschluss	0: kein Abschluss	alle Sensortypen
		1: Abschluss- widerstände aktiv	
q4	Sensortyp		520 Frequenz (direkt oder induktiv)
			525 Impulszähler
			580 SSI
			527 PWM
q5	F1+F2 oder Codierung		525 Impulszähler oder
			580 SSI
q6	Auflösungsvervier-		525 Impulszähler oder
	fachung oder Bit-Länge		580 SSI
q7	physischer		525 Impulszähler oder
	Nullindex-Eingang oder Baudrate		580 SSI
q8	Faktor		525 Impulszähler
q9	Impulse pro Umdrehung		525 Impulszähler
q10	Offset in Impulsen		525 Impulszähler

q11	Richtungsumkehr	525 Impulszähler
q12	Use interpolation	525 Impulszähler

SCL

Shunt Calibration Output (nur PX460)

Nur der Shunt-Ausgang des 2. und des 4. Unterkanals können konfiguriert werden (SPS2 / SPS4, PX460 besitzt nur 2 Shunt-Ausgänge).

Shunt-Ausgang auf Ein / Aus einstellen

Syntax: SCL p1(x)

Parameter:

p 1	Shunt-Ausgang einstellen
0	Aus
1	Ein

SCL?

Shunt Calibration Output Query (nur PX460)

Syntax: SCL?(x)
Parameter: keine

Antwort: q1(y): aktuell eingestellter Status des Shunt-Ausgangs

TDD

Transmit Device Data

Unterschiedliche Verstärkereinstellungen (Parametersätze) aktivieren

Syntax: TDD p1,p2(x)

p2 ist optional

Parameter:

p1	Parametersatz
-2	Speichert alle aktuellen Parameter und Parametersätze des Gerätes und definiert den aktuell aktiven Parametersatz als Boot-Parametersatz. Dieser Befehl kann viel Zeit in Anspruch nehmen (z.B. 1060 s).
-1	Lädt Werkseinstellung in aktuell aktiven Parametersatz und aktiviert ihn. p2 wird nicht verwendet. Befehl kehrt sofort zurück.
	Wenn ein Parametersatz auf die Werkseinstellung gesetzt wird (p1 = -1), werden damit auch alle zugeordneten Teilparametersätze auf die Werkseinstellungen zurückgesetzt. Hierbei ist zu beachten, dass diese Teilparametersätze auch in anderen Parametersätzen verwendet werden könnten!!
0,1,2,	Lädt Parametersatz p1 und aktiviert ihn. Wenn beim Ändern des Parametersatzes ein Fehler auftritt, könnte als Antwort trotzdem "OK" ausgegeben werden. Mit "TDD?" kann der aktuell verwendete Parametersatz überprüft werden.

p2	Antwortverhalten / Timeout
nicht vorhanden oder 0	Wartet nicht, keine Timeout-Erkennung, Befehlt antwortet sofort.
>0.1,	Timeout in Sekunden. Wartet, bis Umschaltung oder Speicherung des Parametersatzes beendet ist (p1=-2) oder ein Timeout eingetreten ist. Wenn der Parameterstz auf Standardwerte gesetzt wird (Werkseinstellung, p1 = -1), ist die Timeout-Option p2 nicht verfügbar!

Hinweis:

Das Parametersatz-System des PMX besteht aus Teilparametersätzen, die zu einem Hauptparametersatz verknüpft sind, der hier aktiviert werden kann (p1 >= 0).

TDD?

Transmit Device Data Query

Abfragen, woher das Verstärker-Setup kommt

Syntax: TDD? p1(x)

p1 ist optional

p1	Befehl Befehl
nicht vorhanden oder 0	Ruft aktiven Parametersatz ab
1	Ruft Statusbit SYSTEM_NOT_READY ab, -> wenn eingestellte Parameterumschaltung im Gange ist

Antwort: q1(y): im Fall von p1

p1	Parameter von Abfrage
nicht vorhanden oder 0	Derzeit aktiver Parametersatz
1	0: System bereit, Parameterumschaltung beendet; 1: System arbeitet noch

CDT

Calibration Dead Load Target

Zielwert der Nullpunktverschiebung

Zielwert für Nullpunktverschiebung der Eingangskennlinie (für Befehl CDV) für alle ausgewählten Kanäle (PCS/SPS) eingeben.

Syntax: CDTp1(x)

Parameter: p1:Zielwert sollte auf den aktuellen Messwert eingestellt

werden

Wirkung: Wert in angezeigten Einheiten, auf den der Verstärker mit dem

Befehl CDV (keine Parameter) eingestellt werden soll.

Werkseinstellung 0.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

CDT?

Calibration Dead Load Target Query

Zielwert der Nullpunktverschiebung ausgeben

Zielwert für Nullpunktverschiebung der Eingangskennlinie (für Befehl CDV) für alle ausgewählten Kanäle (PCS/SPS) ausgeben.

Syntax: CDT?(x) Parameter: keine

Antwort: q1(y):Zielwert, auf den der aktuelle Messwert eingestellt ist

z. B. 0,01,0,0,5,0,502

Virtuelle Unterkanäle (Kanal 9) unterstützen keine "Totlastziele". q1=0.

CDV

Calibration Dead Load Value

Nullpunktverschiebung

Nullpunktverschiebung der Eingangskenndaten (Aufnehmer) für alle ausgewählten Kanäle (PCS/SPS) eingeben.

Syntax: CDVp1 (x)

Parameter: p1:Nullpunktwert (Offset) in angezeigten Einheiten

Keine Parameter: Aktueller Messwert wird auf den mit dem CDT-Befehl eingege-

benen Zielwert eingestellt (Standard: 0.0)

Deshalb wird der aktuelle Messwert benötigt. Wenn der Status

eines der ausgewählten

Unterkanäle nicht gültig ist, wird ein? zurückgegeben!

Wirkung: Zusätzlicher Nullpunktwert (Offset), der die gesamte Kennlinie

verschiebt.

Erklärung: angezeigter Messwert = Brutto (echter Messwert ohne Offset) — p1

Virtuelle Unterkanäle (Steckplatz 9 / Kanal 9), digitale Unterkanäle (Steckplatz 10 / Kanal 10) und PX878 mulit IO-card unterstützen keine Totlastwerte. Befehl wird mit Antwort OK ignoriert.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

CDV?

Calibration Dead Load Value Query

Nullpunktverschiebung ausgeben

Nullpunktverschiebung der Eingangskenndaten für alle ausgewählten Kanäle (PCS/SPS) ausgeben.

Syntax: CDV?(x)
Parameter: keine

Antwort: q1(y): aktueller Nullpunktwert in angezeigten Einheiten

z. B. 0,01,0,10,5,10,502

Virtuelle Unterkanäle (Steckplatz 9 / Kanal 9), digitale Unterkanäle (Steckplatz 10 / Kanal 10) und PX878 multi IO-card unterstützen keine Totlastwerte. q1=0..

ATB

Application To Bus

Applikation zu Bus

Schreibt einen ganzzahligen 64-Bit-Wert, der vom Feldbus-Master gelesen werden kann

Syntax: ATBp1 (x)

Parameter: p1: Ganzzahliger 64-Bit-Wert

Das Format von p1 kann ein Dezimalwert, z. B. 87612398745, oder ein Hexadezimalwert, z. B. "0xaa12bb34cc56dd78", sein der als Zeichenkette mit Präfix "0x" eingegeben werden muss.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

ATB?

Application To Bus Query

Applikation zu Bus Abfrage

Gibt den aktuellen ganzzahligen 64-Bit-Wert als Hexadezimalzahl aus, der vorher mit dem ATB-Befehl geschrieben wurde

Syntax: ATB?(x)
Parameter: keine

Antwort: q1(y): aktueller mit ATB-Befehl geschriebener Wert als Hexa-

dezimalzahl z. B. 0xab12

BTA?

Bus To Application Query

Bus zu Applikation Abfrage

Liest den ganzzahligen 64-Bit-Wert, der vom Feldbus-Master geschrieben werden kann

Syntax: BTA?(x)
Parameter: keine

Antwort: q1(y): aktueller vom Feldbus-Master geschriebener Wert als

Hexadezimalzahl z. B. 0xab12

STF

Set Time Format

Zeitformat einstellen

Legt Inhalt und Format der Zeitkanäle fest (MCS 17,18,19)

Syntax: STFp1 (x)

Parameter: p1 = 0:Werkseinstellung, Ticks (hochzählender Counter) als ein

ganzzahliger 64-Bit-Wert

p1 = 1: Systemzeit als zwei ganzzahlige 32-Bit-Werte, Nanosekunden (die ersten 4 Bytes) und Sekunden (die zweiten 4 Bytes)

p1 = 2:Systemzeit als zwei ganzzahlige 32-Bit-Werte, Mikrosekunden und Sekunden p1 = 3:Systemzeit als zwei ganzzahlige 32-Bit-Werte, 2^-32 Sekunden und Sekunden

Die Summe der Sekunden und ihre Bruchteile ist gleich der Zeit, die seit 01.01.1970 vergangen ist.

Die Systemzeit kann von der NTP-Zeit abgeleitet werden. Die Genauigkeit ist nicht zu 100% vorhersagbar.

Hinweis: Die Antwort ist abhängig vom Befehl SRB.

STF? Set TimeFormat Query

Eingestelltes Zeitformat abfragen

Liest das gerade verwendete Zeitformat

Syntax: STF?(x)
Parameter: keine

Antwort: q1(y): Aktuelle Einstellung für das Zeitformat

BLK

Aktiviert oder deaktiviert die LED-Signalfunktionen des gesamten Geräts oder die Signalfunktion der ausgewählten (Unter-) Kanäle (PCS / SPS)

Syntax: BLK p1,p2,p3(x)

Parameter 1	Selection p1 = 0: whole device p1 =1: subchannel
Parameter 2	Blink mode see tables below for both selections of p1
Parameter 3	P1 = 0: time of LED signalling in seconds (160) p1 = 1: ignored, no timeout possible

Parameters: none

Response: q1(y): current setting of the timeformat

Transducer electronic datasheet

TEDS Datenblatt

Syntax: TED p1,p2,p3(x)

p1	p2	Р3	Wirkung
0	-	-	Liest die TEDS-Daten vom Aufnehmer in den Verstärker ein. Im Falle von beschädigten Daten oder, wenn TEDS nicht verfügbar ist, lautet die Antwort q1 = "?". In dem Fall werden keine TEDS-Daten an den Verstärker übertragen (Länge = 0) Wenn mehr als eine TEDS-Aufnehmeridentifikation ausgelesen wird (PCS/SPS), wird die Fehlerantwort auch ausgegeben, wenn nur eine TEDS-Aufnehmeridentifikation beim Lesen einen Fehler aufweist.
			TEDS-Daten sind in 32-Byte-Seiten angeordnet. Das 1. Byte ist die Prüfsumme, die folgenden 31 sind Datenbytes. Die Daten werden gelesen und geprüft, bis die erste ungültige Seite gefunden wird oder alle Seiten gelesen wurden. Die gültigen Datenseiten werden im Verstärker gespeichert. Die Prüfsummen-Bytes werden entfernt.
			Der Befehl wird synchron ausgeführt. Dies bedeutet, dass die Antwort ausgegeben wird, wenn das Auslesen der TEDS-Aufnehmeridentifikation abgeschlossen ist.
			Virtuelle Unterkanäle (Kanal 9) unterstützen keine TEDS- Aufnehmeridentifikation (nicht physisch vorhanden). Das Auslesen wird ignoriert, und OK wird zurückgegeben.

p1	p2	Р3	Wirkung
1	Daten- länge	Daten (ASCII -Hex- Zei- chen- kette)	Überträgt und schreibt Daten in den Aufnehmerspeicher. p2 = Datenlänge: Byte-Anzahl. p3: Daten im ASCII-Hex-Format. z. B. "AB75e2". Wenn p2 (Datenlänge) gleich 0 ist und p3 eine leere Zeichenkette "" ist (jedoch angegeben werden muss), werden die Daten, die in den Aufnehmer geschrieben werden, aus dem Speicher des Verstärkers übernommen. Dies ist natürlich nur möglich, wenn sie vorher mit "Ted 0" fehlerfrei ausgelesen wurden. Intern werden nur ganze Seiten mit 32 Byte in den Aufnehmer geschrieben (1 Prüfsummen-Byte + 31 Datenbytes). Zum Beispiel: Wenn der Benutzer 32 Datenbytes in den Aufnehmer schreiben möchte, werden zwei Seiten geschrieben. Die zweite Seite enthält das Prüfsummen-Byte, ein Datenbyte vom Benutzer und 30 Füllbytes (Nullwerte). Die Prüfsumme wird intern berechnet und hinzugefügt. Virtuelle Unterkanäle (Kanal 9) unterstützen keine TEDS- Aufnehmeridentifikation (nicht physisch vorhanden). Das Schreiben wird ignoriert, und OK wird zurückgegeben.
100	-	-	Liest und interpretiert TEDS-Daten. Wenn die Daten beschädigt sind oder die Einstellungen für den Verstärker nicht möglich sind, lautet die Antwort q1 = "0", aber EST?1 liefert den Code 15023: "TEDS ERROR" oder den Code 20031: "TEDS WARNING". Nähere Informationen über diese Fehler und Warnungen erhalten Sie mit TED?100 und TED?101. Im Falle von konkurrierenden Vorlagen werden die Einstellungen der letzten Vorlage akzeptiert. Noch nicht unterstützt!
101	-	-	Löscht ein ggf. gesetztes Fehlerbit des TEDS-Messwerts. Dieses Fehlerbit könnte gesetzt werden, wenn ein TED100-Befehl einen gültigen TEDS-Inhalt findet, die Gerätekonfiguration jedoch fehlgeschlagen ist. Dies könnte eine ungültige oder nur teilweise durchgeführte Konfiguration und aufgrund dessen möglicherweise ungültige Messwerte zur Folge haben. Virtuelle Unterkanäle (Kanal 9) und die PX878 unterstützen keine TEDS (nicht physisch vorhanden). Befehl wird ignoriert, ausgegeben wird OK.

Transducer electronic datasheet Query

TEDS ausgeben

Syntax:

TED? p1(x)

Parameter:

P1	Wirkung			
0	Liest den TEDS-Header (8 Byte binär) auf dem TEDS-Aufnehmer aus			
	q1: binär mit "#" und Blocklänge (16 Bit binär). Es gibt kein CR/LF am Ende der binären TEDS-Daten.			
	Wenn mehr als ein Unterkanal ausgewählt ist (PCS/SPS), werden die			
	Daten durch ein ";" getrennt.			
	Virtuelle Unterkanäle (Kanal 9) unterstützen keine TEDS-Aufnehmeridentifikation (nicht physisch vorhanden).			
1	Liest die TEDS-Daten <i>aus</i> dem Speicher des Verstärkers aus.			
	q1: binär mit "#" und Blocklänge (16 Bit binär). Es gibt kein CR/LF am Ende der binären TEDS-Daten.			
	Die Blocklänge ist abhängig vom TEDS-Chip (einadrig). Z. B. 512 Byte. Wenn mehr als ein Unterkanal ausgewählt ist (PCS/SPS), werden die			
	Daten durch ein ";" getrennt.			
	Die Mindestanzahl von Bytes sollte 31 sein (1 Prüfsummen-Byte wird von der 32-Byte-Seite abgezogen).			
100	Ruft den Warnungs-/Fehlerstatus der TEDS-Vorlagenbehandlung ab (verursacht durch TED100). Nicht wie MGC			
	q1 = "0": OK			
	q1 = "?": Fehler oder keine Informationen verfügbar.			
101	Ruft Fehlerbit des TEDS-Messwerts ab.			
	q1 = "0": OK			
	q1 = "?": Fehlerbit gesetzt			
102	Ruft Status der TEDS-Einstellung ab.			
	q1 = "0": Im TEDS definierte Parameter wurden später geändert.			
	q1 = "1": Alle im TEDS definierten Parameter sind im Verstärker eingestellt; wird noch nicht unterstützt.			

TED?100

Antwort: q1,q2,q3

q1:0: kein Fehler

andernfalls Vorlagen-ID mit Fehler

q2: Fehler-Bitposition in Vorlage

q3: Fehlertyp:17000 Vorlage und Verstärker nicht kompatibel

17002 Wert über Grenzwert17003 Wert unter Grenzwert

17004 Wert außerhalb der Grenzwerte

TED?102

Antwort g1: Prüft den Status der TEDS-Einstellung, liest keine TEDS-Auf-

nehmeridentifikation vom Aufnehmer aus

q1 = 0 Einstellung des Verstärkers ist nicht aktuell

q1 = 1 Alle durch TEDS definierten Parameter sind im Verstärker eingestellt

TID?

Transducer Identification Query

Chip-Identifikation lesen

Syntax: TID?p1(x)

Parameter:

p1	Wirkung
1	Liest die 8 Ident-Bytes des TEDS-Chips

Antwort:

Antwort	Bedeutung
?	Kein TEDS-Chip verfügbar
z. B. "0A0000008A3D4C23"	Chip-Identifikation als hexadezimale Zeichenfolge

Hinweis: Virtuelle Unterkanäle (Kanal 9) und die PX878 unterstützen

keine TEDS. Die Abfrage gibt einen Fehler für jeden ausgewähl-

ten Unterkanal aus.

SRB

Select Response Behavior

Antwortverhalten der aktuellen Schnittstelle auswählen

Syntax: SRB p1(x)

Parameter:

p1	Antwortausgabe ein-/ausschalten
0	Antwortausgabe ausschalten
1	Antwortausgabe einschalten

Wirkung: Es gibt zwei Arten des Befehls:

a.) Abfragebefehle (z. B. RMV?) sind durch ein Fragezeichen gekennzeichnet und generieren unabhängig vom für die

Schnittstelle ausgewählten Antwortverhalten Ausgabedaten. Es ist nicht möglich, die Ausgabe dieser Daten bei einem Befehl dieser Art zu verhindern.

b.) Einstellbefehle (z. B. SRB) generieren Rückmeldedaten (0 oder ?). Sie können festlegen, ob diese Daten bei dieser Art von Befehl ausgegeben werden sollen, indem Sie die Option einoder ausschalten.

Antwort:

Antwort	Bedeutung
0	Der Befehl wurde ausgeführt (wenn SRB 1(x) vorher ausgeführt wurde)
?	Fehler (wenn SRB 1(x) vorher ausgeführt wurde)
keine	Der Befehl wird ausgeführt oder Fehler, wenn SRB 0(x) vorher ausgeführt wurde

SRB?

Select Response Behavior Query

Antwortverhalten der aktuellen Schnittstelle ausgeben

Syntax: SRB?(x)
Parameter: keine
Antwort: q1(y)

q1	Antwortausgabe ein-/ausschalten		
0	aus		
1	ein		

EST?

Error Status Query

Antwortverhalten der aktuellen Schnittstelle ausgeben

Syntax: EST?p1(x)

Parameter: p1: ignoriert, optional

Gibt die vorhandenen Fehler und Warnungen in Listenform für jeden ausgewählten Unterkanal aus. Die einzelnen Fehler/Warnungen eines Unterkanals werden durch Komma getrennt (ein Unterkanal kann mehr als einen Fehler/eine Warnung haben). Die einzelnen Unterkanäle werden durch einen Doppelpunkt (:) für die Fehlerstatuswerte getrennt; siehe nachfolgende Tabelle.

Status	Wert	Bemerkungen
No error	0	
FACTORY CAL ERR	15001	Factory calibration corrupted
CALIBRATION ERR	15020	Calibration lines have not produced a valid setting or calibration in progress
TEDS Error	15023	Error interpret TEDS
Hardware underflow	15030	Error in six wire circuit or value out of range
Hardware overflow	15031	Error in six wire circuit or value out of range
TEDS warning	20031	Warning interpret TEDS

IDS?

Identifier Settings Query

Aktuell verwendetes Zeitformat lesen

Syntax: IDS?p1(x)

Parameter: p1: numerischer Wert der Textzugriffsnummer Antwort: q1: Kennungs-Zeichenfolge auf Englisch für p1

Beispiel: IDS?15030(x)

"Hardware underflow"(y)

Unterstützte Textzugriffsnummern

15001, 15020, 15023, 15030, 15031, 20031

LSS?

Limit Switch Status Query

Grenzwert-Status ausgeben

Syntax: LSS?(x)

Parameter: p1: LIV1-Status AUS oder EIN: 0 oder 1; p2: LIV2-Status AUS

oder EIN: 0 oder 1

....

p32: LIV32-Status AUS oder EIN: 0 oder 1

LVL

Limit Value Level

Höhe des Grenzwerts eingeben

Syntax: LVL p1,p2(x)

Parameter: p1: Nummern der Grenzwertschalter (1...32)

p2: Höhe des Grenzwerts in angezeigten Einheiten (Gleitkomma); Antwort ist abhängig vom Befehl SRB.

LVL?

Limit Value Level Query

Höhe des Grenzwerts ausgeben

Syntax 1: LVL?p1(x)

Parameter: p1: Nummer des Grenzwertschalters (1...32)

Antwort: q1,q2(y)

q1: Nummer des Grenzwertschalters (1...32)

q2: Höhe des Werts in angezeigten Einheiten (Gleitkomma)

Syntax 2: LVL??(x)
Parameter: keine

Antwort: q1,q2(y): verfügbare Grenzwertschalter (Bereich): 1, 32

Syntax 3: LVL?,?(x)
Parameter: keine

Antwort: q1,q2(y): möglicher Eingangsbereich für Höhe des Werts

(Gleitkomma)

LVS

Limit Value Switch

Parametriert Grenzwertschalter.

Eingangswert wird ab dem ersten Signal verwendet, das mit

dem Befehl PCS und SPS definiert wurde.

Syntax: LVS p1,p2,p3,p4,p5,p6,p7,p8(x)

Parameter: p1: Nummer des Grenzwertschalters - (1...32)

p2: BETRIEB (EIN=1 oder AUS=0)

Р3	Richtung
130	Über Grenzwert
131	Unter Grenzwert
132	Im Band
133	Außerhalb des Bands

p4: Höhe des Werts in angezeigten Einheiten (unterer Wert im Band-Modus) (Gleitkomma)

p5: Hysterese (oder Breite des Bands im Band-Modus) in angezeigten Einheiten (Gleitkomma)

p6: Rücksetzverhalten (kann für Hysterese-Verwaltung genutzt werden): Binärmaske, für die eine AND-Verknüpfung mit allen Digitaleingängen erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Grenzwertschalter gelöscht. Wertebereich: 0,1,2,4,8,16,....32768. Das Rücksetzverhalten kann mit p7 invertiert werden. Standardwert ist 0. Der Parameter ist optional.

p7: 0 oder 1. Invertiert das Rücksetzverhalten.

0: Rücksetzverhalten arbeitet so, wie mit p6 definiert.

1: Rücksetzverhalten wird invertiert.

Standardwert ist 0. Der Parameter ist optional.

p8: 0 oder 1.

0: Nur wenn der Messwert-Status OK ist, wird der Grenzwertschalter bewertet; friert den Status des Grenzwertschalters ein, wenn der Messwert-Status einen (mehrere) Fehler aufweist.

1: Messwert-Status wird ignoriert.

Standardwert ist 0. Der Parameter ist optional.

LVS?

Limit Value Switch Query

Parameterzuordnung von Grenzwertschaltern ausgeben

Syntax1: LVS?p1(x)

Parameter: p1: Nummer des Grenzwertschalters (1...32)

Antwort: q1...q10(y)

q1: Nummer des Grenzwertschalters (1...32); q2: aktivierter Status (EIN=1, AUS=0); q3: Eingangskanal (Steckplatz)

q4: Eingangs-Unterkanal (Signal)

q5: Betriebsrichtung (-1(Aus),130,131,132,133; siehe Befehl LVS)

q6: Höhe des Werts oder unterer Wert des Bands in angezeigten Einheiten (Gleitkomma); q7: Hysterese oder Breite des Bands in angezeigten Einheiten (Gleitkomma); p8: Rücksetzverhalten (Binärmaske, siehe Befehl LVS)

q9: Invertiert das Rücksetzverhalten (0, 1, siehe Befehl LVS) q10: Ignoriert den Messwert-Status (0, 1, siehe Befehl LVS) Syntax 2: LVS??(x)
Parameter: keine

Antwort: q1,q2(y): verfügbare Grenzwertschalter (1..32)

SOP

Setup Output

Parametriert Digitalausgänge.

Messwert-Status wird ab dem ersten Signal genutzt, das

definiert wurde mit

dem PCS- und SPS-Befehl.

Syntax: SOP p1,p2,p3,p4,...,p17(x); p4 ... p17 sind optional.

Standardwert ist 0.

Parameter: p1: Nummer des Digitalausgangs (1...16)

p2: Aktivierung für Grenzwertschalter (EIN=1, AUS=0). Sofern aktiviert, wird der Status der 32 Grenzwertschalter zusammen mit der Maske für die Grenzwertschalter (p3) verwendet, um den Status eines Digitalausgangs zu definieren.

p3: Binärmaske für Grenzwertschalter, für die eine AND-Verknüpfung mit allen Grenzwertschaltern erstellt wird.

Bit 0 dieser Maske wird für Grenzwertschalter 1 verwendet, Bit 1 wird für Grenzwertschalter 2 verwendet uns so weiter. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt.

Wertebereich: 0,1,2,4,8,16,....32768,65536,....2^30,2^31. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Sie könnte verwendet werden, um ein "Fenster-Verhalten" eines Digitalausgangs zu erzeugen.

p4: Aktivierung für Messwert-Status (EIN=1, AUS=0). Sofern aktiviert, wird der Statuswert eines Messwert-Status verwendet, um den Status eines Digitalausgangs zu definieren. Wenn dieser Messwert-Status einen Fehler aufweist, wird der Digitalausgang auf 1 gesetzt / eingeschaltet. (PCS / SPS)

p5: Aktivierung für Feldbus-Bits (EIN=1, AUS=0). Sofern aktiviert, wird der Statuswert eines 32-Bit-Worts, das von einem Feldbus-Master geschrieben werden kann, zusammen mit der Maske für die Feldbus-Bits (p6) verwendet, um den Status eines Digitalausgangs zu definieren.

p6: Binärmaske für die Felbus-Bits, für die eine AND-Verknüpfung mit den 32 Feldbus-Bits erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt.

- Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1)
- p7: Aktivierung für Digitaleingänge (EIN=1, AUS=0). Sofern aktiviert, wird der Status der 16 Digitaleingänge zusammen mit der Maske für die Digitaleingänge (p8) verwendet, um den Status eines Digitalausgangs zu definieren.
- p8: Binärmaske für Digitaleingänge, für die eine AND-Verknüpfung mit den 16 Digitaleingängen erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^16-1)
- p9: Aktivierung für Parametersatz-Nummer (EIN=1, AUS=0). Sofern aktiviert, wird die Parametersatz-Nummer zusammen mit der Maske für die Parametersatz-Nummer (p10) verwendet, um den Status eines Digitalausgangs zu definieren.
- p10: Binärmaske für die Parametersatz-Nummer, für die eine AND-Verknüpfung mit der aktuell aktiven Parametersatz-Nummer erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1)
- p11: Aktivierung für Bits von berechneten Kanälen (EIN=1, AUS=0). Sofern aktiviert, wird der Status des 32-Bit-Worts, das durch einen oder mehrere berechnete Kanäle definiert werden kann, zusammen mit der Maske für die berechneten Kanäle (p12) verwendet, um den Status eines Digitalausgangs zu definieren.
- p12: Binärmaske für die berechneten Kanäle, für die eine AND-Verknüpfung mit den 32 Bits der berechneten Kanäle erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1)
- p13: Aktivierung für CodeSys-Bits (EIN=1, AUS=0). Sofern aktiviert, wird der Status des 32-Bit-Worts, das durch die CodeSys-Anwendung definiert werden kann, zusammen mit der Maske für die CodeSys-Bits (p14) verwendet, um den Status eines Digitalausgangs zu definieren. Wenn CodeSys nicht verfügbar ist, ist der Wert 0.
- p14: Binärmaske für die CodeSys-Bits, für die eine AND-Verknüpfung mit den 32 Bits der CodeSys-Anwendung erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr

als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1). Wenn CodeSys nicht verfügbar ist, ist der Wert 0.

p15: Aktivierung für Systemstatus-Bits (EIN=1, AUS=0). Sofern aktiviert, wird der Status der 32 Bit des Systemstatus zusammen mit der Maske für den Systemstatus (p16) verwendet, um den Status eines Digitalausgangs zu definieren.

p16: Binärmaske für die Systemstatus-Bits, für die eine AND-Verknüpfung mit den 32 Systemstatus-Bits erstellt wird. Wenn das Ergebns >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1)

p17: Invertiert den Digitalausgang (0: wie zuvor beschrieben; 1: invertiert).

SOP?

Setup Output Query

Parameterzuordnung eines bestimmten Digitalausgangs ausgeben

Syntax1: SOP?p1(x)

Parameter: p1: Nummer des Digitalausgangs (1...16)

Antwort: q1...q19(y)

q1: Nummer des Digitalausgangs (1...16)

q2: Aktivierung für Grenzwertschalter (EIN=1, AUS=0). Sofern aktiviert, wird der Status der 32 Grenzwertschalter zusammen mit der Maske für die Grenzwertschalter (q3) verwendet, um den Status eines Digitalausgangs zu definieren.

q3: Binärmaske für Grenzwertschalter, für die eine AND-Verknüpfung mit allen Grenzwertschaltern erstellt wird. Bit 0 dieser Maske wird für Grenzwertschalter 1 verwendet, Bit 1 wird für Grenzwertschalter 2 verwendet und so weiter. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Wertebereich: 0,1,2,4,8,16,....32768,65536,....2^30,2^31. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Sie könnte verwendet werden, um ein "Fenster-Verhalten" eines Digitalausgangs zu erzeugen.

q4: Aktivierung für Messwert-Status (EIN=1, AUS=0). Sofern aktiviert, wird der Statuswert eines Messwert-Status verwendet, um den Status eines Digitalausgangs zu definieren. Wenn dieser Messwert-Status einen Fehler aufweist, wird der Digitalausgang auf 1 gesetzt / eingeschaltet.

- q5: Eingangskanal (Steckplatz)
- q6: Eingangs-Unterkanal (Signal)
- q7: Aktivierung für Feldbus-Bits (EIN=1, AUS=0). Sofern aktiviert, wird der Statuswert eines 32-Bit-Worts, das von einem Feldbus-Master geschrieben werden kann, zusammen mit der Maske für die Feldbus-Bits (q8) verwendet, um den Status eines Digitalausgangs zu definieren.
- q8: Binärmaske für die Felbus-Bits, für die eine AND-Verknüpfung mit den 32 Feldbus-Bits erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1)
- q9: Aktivierung für Digitaleingänge (EIN=1, AUS=0). Sofern aktiviert, wird der Status der 16 Digitaleingänge zusammen mit der Maske für die Digitaleingänge (q10) verwendet, um den Status eines Digitalausgangs zu definieren.
- q10: Binärmaske für Eingangskanäle, für die eine AND-Verknüpfung mit den 16 Eingangskanälen erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^16-1)
- q11: Aktivierung für Parametersatz-Nummer (EIN=1, AUS=0). Sofern aktiviert, wird die Parametersatz-Nummer zusammen mit der Maske für die Parametersatz-Nummer (q12) verwendet, um den Status eines Digitalausgangs zu definieren.
- q12: Binärmaske für die Parametersatz-Nummer, für die eine AND-Verknüpfung mit der aktuell aktiven Parametersatz-Nummer erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1)
- q13: Aktivierung für Bits von berechneten Kanälen (EIN=1, AUS=0). Sofern aktiviert, wird der Status des 32-Bit-Worts, das durch einen oder mehrere berechnete Kanäle definiert werden kann, zusammen mit der Maske für die berechneten Kanäle (q14) verwendet, um den Status eines Digitalausgangs zu definieren.
- q14: Binärmaske für die berechneten Kanäle, für die eine AND-Verknüpfung mit den 32 Bits der berechneten Kanäle erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1)

p15: Aktivierung für CodeSys-Bits (EIN=1, AUS=0). Sofern aktiviert, wird der Status des 32-Bit-Worts, das durch die CodeSys-Anwendung definiert werden kann, zusammen mit der Maske für die CodeSys-Bits (p16) verwendet, um den Status eines Digitalausgangs zu definieren. Wenn CodeSys nicht verfügbar ist, ist der Wert 0.

p16: Binärmaske für die CodeSys-Bits, für die eine AND-Verknüpfung mit den 32 Bits der CodeSys-Anwendung erstellt wird. Wenn das Ergebnis >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1). Wenn CodeSys nicht verfügbar ist, ist der Wert 0.

p17: Aktivierung für Systemstatus-Bits (EIN=1, AUS=0). Sofern aktiviert, wird der Status der 32 Bit des Systemstatus zusammen mit der Maske für den Systemstatus (p18) verwendet, um den Status eines Digitalausgangs zu definieren.

p18: Binärmaske für die Systemstatus-Bits, für die eine AND-Verknüpfung mit den 32 Systemstatus-Bits erstellt wird. Wenn das Ergebns >0 (wahr) ist, wird dieser Digitalausgang gesetzt. Möglich ist auch eine Maske mit mehr als einem Bitsatz. Wertebereich: 0,1,2,3...(2^32-1)

q19: Invertiert den Digitalausgang (0: wie zuvor beschrieben; 1: invertiert).

Syntax 2: SOP??(x)
Parameter: keine

Antwort: q1,q2(y): verfügbare Digitalausgänge (1..16)

RIP?

Read Digital Input query

Digitaleingänge lesen und ausgeben

Syntax: RIP?(x)
Parameter: keine

Wirkung: Liest die 16 möglichen Digitaleingänge des PMX-Geräts und

gibt den binären Zustand jedes Eingangs als ganzzahligen Wert zwischen 0 und 65535 aus. Die niederwertigen 8 Bits stellen die 8 Eingänge des ersten PX878 dar. Die höherwertigen 8 Bits stellen die 8 Eingänge des zweiten PX878

herwertigen 8 Bits stellen die 8 Eingänge des zweiten PX878

dar.

Die Bits 16 ... 31 sind immer virtuell.

Beispiel: RIP?(x)

1025(y)

Eingang 3 (Bit 10 (8+2)) des 2. PX878 und Eingang 1 (Bit 0) des 1. PX878 sind gesetzt (die Zählung der Eingänge beginnt mit 1).

ROP Set Digital Outputs

Digitalausgänge setzen

Syntax: ROP p1, p2(x)

Parameter: p1: binäre Darstellung aller Ausgänge, 0...65535

p2: optional, binäre Darstellung der ausgewählten Ausgänge. Falls kein Wert angegeben ist, werden alle 16 Ausgänge auf

den mit p1 festgelegten Zustand gesetzt. Wert für p2: 0...65535, Standardwert: 65535

Wirkung: Setzt die 16 möglichen Digitalausgänge des PMX-Geräts. Die

niederwertigen 8 Bits von p1 stellen die 8 Ausgänge des ersten PX878 dar. Die höherwertigen 8 Bits stellen die 8 Ausgänge

des zweiten PX878 dar.

Die Ausgänge stehen zur Verfügung, selbst wenn kein PX878 angeschlossen ist. In diesem Fall sind sie rein virtuell. Sie können gesetzt oder zurückgegeben werden, sind jedoch

elektrisch nicht vorhanden.

p2 definiert die ausgewählten Bits, deren entsprechender Ausgang mit p1 gesetzt oder gelöscht wird. Die Ausgänge, deren entsprechende Bits in p2 0 sind, sind nicht betroffen.

5...sp. 55...a. 2...a 2...s ... p 2 5 5...a, 5...a ...a ...

Die Bits 16 ... 31 sind immer virtuell.

Beispiel: ROP2, 32770(x)

O(y)

Ausgang 8 (Bit 15) des 2. PX878 wird gelöscht und Ausgang 2 (Bit 1) des 1. PX878 wird gesetzt (die Zählung der Ausgänge beginnt mit 1).

Lediglich diese beiden Bits werden mit p2 ausgewählt. Alle anderen Ausgänge bleiben unverändert.

Hinweis

ROP?

Die Ausgänge des PMX-Geräts werden durch Einstellungen definiert, die in zusätzlich zuschaltbaren (Sub)Parametersätzen gespeichert sind. Dieser Befehl verändert die Einstellungen der ausgewählten Ausgänge des gerade verwendeten Sub-Parametersatzes so, dass der Ausgang auf den erwünschten Zustand schaltet. Wenn ein Parametersatz geschaltet wird, wird ein früherer ROP-Befehl überschrieben.

Read Digital Output Query

Digitalausgänge

Syntax: ROP? (x)

Parameter: keine

Wirkung: Liest die 16 möglichen Digitalausgänge des PMX-Geräts und

gibt den binären Zustand jedes Ausgangs als ganzzahligen Wert zwischen 0 und 65535 aus. Die niederwertigen 8 Bits stellen die 8 Ausgänge des ersten PX878 dar. Die hö-

herwertigen 8 Bits stellen die 8 Ausgänge des zweiten PX878

dar.

Die Ausgänge stehen zur Verfügung, selbst wenn kein PX878 angeschlossen ist. In diesem Fall sind sie rein virtuell. Sie können gesetzt oder zurückgegeben werden, sind jedoch

elektrisch nicht vorhanden.

Beispiel: ROP?(x)

32770(y)

Ausgang 8 (Bit 15) des 2. PX878 und Ausgang 2 (Bit 1) des 1. PX878 werden gesetzt (die Zählung der Ausgänge beginnt mit 1).

OSP?

Output Signal Path Query (only PX878)

Analogausgänge

Reagiert auf den Quellkanal und Quellunterkanal des Analogausgangs (der Analogausgange) der PX878, der (die) zuvor mit PCS und SPS ausgewählt wurde(n).

Syntax: OSP? (x) Parameters: none

Effect: Source channel, source-sub channel: source-channel,

source-subchannel ... (y)

Example: OSP?(x)

1,4: 9, 1 ... (y)

OSP

Output Signal Path (only PX878)

Analogausgänge

Setzt den Quellkanal und Quellunterkanal des Analogausgangs (der Analogausgänge) der PX878, der (die) zuvor mit PCS und SPS ausgewählt wurde(n), und deaktiviert einen eventuell aktiven Prüfmodus, der ggf. zuvor mit SAO aktiviert worden ist.

Syntax: OSP p1, p2 (x)

Parameters: p1: source-channel (slot)

p2: source-subchannel

Example: OSP 1,4 (x)

Set analogue Output Query (only PX878)

Analogausgänge

Reagiert auf die Spannung(en) des Prüfsignals (der Prüfsignale) des Analogausgangs (der Analogausgänge) der PX878, der (die) zuvor mit PCS und SPS ausgewählt wurden. Dies bedeutet nicht, dass das Prüfsignal aktiv ist und dass die ausgegebene(n) Spannung(en) aktuell an den Ausgang (die Ausgänge) weitergeleitet wird (werden).

Syntax: SAO? (x)
Parameters: none

Response: voltage, voltage, ... (y)

Example: SAO?(x)

1.1, -4.2, ... (y)

Wichtig

Dieser Befehl ist ab der PMX-Firmware 2.00 und höher implementiert.

Set analogue Output (only PX878)

Analogausgänge

Setzt die Spannung aller ausgewählten Analogausgänge von einer oder mehreren PX878 Multi-I/O-Karten auf einen gegebenen Pegel (-10 V ... +10 V). Der Befehl aktiviert einen Prüfmodus und trennt die Verbindung des Analogausgangs vom Pfad seiner zuvor verbundenen Signalquelle. Zum Deaktivieren des Prüfmodus wird der Befehl OSP verwendet.

Syntax: SAO p1 (x)
Parameters: p1: voltage
Example: SAO 1.25(x)

Note: Dieser Befehl verursacht eine starke Belastung der CPU. Eine

Einstellung von 10 Werten pro Sekunde für einen einzelnen

Analogausgang erhöht die CPU-Last um etwa 15 %.

Wichtia

Dieser Befehl ist ab der PMX-Firmware 2.00 und höher implementiert.

21.3 Beispiele

Einfacher Fall einer Messwertekonfiguration

Terminologie:

Beispiel einer PMX-Befehlsliste in einer Telnet-Sitzung unter Microsoft Windows

PMX-Namen	Namen der Catman-Oberfläche
Bestückte Karten-Steckplätze	Kanäle
Physische Kanäle auf einer Karte	Unterkanäle
Typen interner Kanäle:	Signale:
Original, Min, Max, PP	Gross, Min, Max, Max-Min

Beispiel:

Wählen Sie ein Filter global aus, und zeichnen Sie Unterkanäle auf, die in Messratengruppen eingeteilt wurden.

Bitte ändern Sie das Beispiel in diesem Dokument nicht, da ein Beispielcode darauf verweist!

```
pcs 0 (x) sps 0 (x) sfc 141,969 (x)
pcs 1 (x) sps 3,4 (x) mrg 0 (x)
pcs 2 (x) sps 1,2 (x) mrg 1 (x)
icr 6320,0 (x)
icr 6319,1 (x)
pcs 1 (x) sms 3,4 (x) sps 3,4 (x) mss 214 (x)
pcs 2 (x) sms 1,2 (x) sps 1,2 (x) mss 214 (x)
mcs 1,2 (x)
tsv 10 (x)
omp? 0 (x) omp? 1 (x)
rmb? 10,6409,0 (x) rmb? 10,6409,1 (x)
(x)
Befehlsterminator: [CR][LF]
?
```

Das Fragezeichen ist selbst Teil von Abfragebefehlen, die andere Werte als eine Bestätigung ausgeben.

Das bedeutet:

Ein Butterworth-Filter mit 1000 Hz global setzen.

Alle Karten auswählen	Alle ihre Unterkanäle auswählen	Filtercharakteristik Butterworth mit Grenzfrequenz 1000 Hz auswählen
pcs 0	sps 0	Sfc 141, 969

Karten und ihre Unterkanäle in Messratengruppen sortieren.

Karte 1 auswählen	Ihre Unterkanäle 3 und 4 auswählen	Die Auswahl in Messratengruppe 0 einteilen
pcs 1	sps 3,4	mrg 0
Karte 2 auswählen	Ihre Unterkanäle 1 und 2 auswählen	Die Auswahl in Messratengruppe 1 einteilen
pcs 2	sps 1,2	mrg 1

Abtastraten für Messratengruppen setzen.

9600 Hz für Messratengruppe 0 auswählen	
icr 6320, 0	

4800 Hz für Messratengruppe 1 auswählen
icr 6319, 1

Aufzeichnungsmaske setzen (in diesem Beispiel werden die gleichen Unterkanäle ausgewählt, die weiter oben in die Messratengruppen eingeteilt wurden).

Karte 1 auswählen	Ihre Unterkanäle 3 und 4 für Aufzeichnung setzen	Unterkanäle 3,4 der zuvor ausgewählten Karte 1 auswählen	Signal "gross" (= dynamische Ist-Messwerte) für ausgewählte Unterkanäle setzen
pcs 1	sms 3,4	sps 3,4	mss214
Karte 2 auswählen	Ihre Unterkanäle 1 und 2 für Aufzeichnung setzen	Unterkanäle 1,2 der zuvor ausgewählten Karte 2 auswählen	Signal "gross" (= dynamische Ist-Messwerte) für ausgewählte Unterkanäle setzen
pcs 2	sms 1,2	sps 1,2	mss 214

Karten 1,2 für Aufzeichnung setzen	
mcs 1,2	
Einen Wertesatz aufzeichnen	

tsv 10

Prüfen, ob die Wertezeile im FIFO-Puffer angekommen ist

Verfügbare Zeilen für Messratengruppe 0 abrufen	Verfügbare Zeilen für Messratengruppe 1 abrufen
omp? 0	omp? 1
	Antwort: 2 Bytes Header "#0", 80 Bytes Werte, 2 Bytes Antwort-Endsequenz CRLF.

Die Werte abrufen, die im FIFO-Puffer aufgezeichnet wurden

10 Wertezeilen von Messratengruppe 0 abrufen und den internen FIFO-Lesezeiger darauf einstellen (Konstante ADJUST_READ_POINTER = 6409)	10 Wertezeilen von Messratengruppe 1 abrufen und den internen FIFO-Lesezeiger darauf einstellen
rmb? 10 , 6409, 0	rmb? 10 , 6409, 1
Antwort: 2 Bytes Header "#0", 80 Bytes Werte, 2 Bytes Antwort-Endsequenz CRLF.	Antwort: 2 Bytes Header "#0", 80 Bytes Werte, 2 Bytes Antwort-Endsequenz CRLF.
Dies sind 20 Werte, von denen jeder aus 4 Bytes im Gleitkommaformat besteht. (10 Zeilen (Sätze) mit zwei Unterkanälen, je- der mit einem aktiven Signal.)	

Hinweise

- Leerzeichen innerhalb oder zwischen Befehlen werden ignoriert und sind optional.
 Die Kommas zwischen den Parametern sind sehr wichtig.
- Kanäle und Unterkanäle werden 1, 2... gezählt, und 0 bedeutet "alle";: dagegen werden Messratengruppen 0, 1, 2 gezählt, da es hier kein "alle" gibt.
- Einige Befehle können optional sein, da sie nur die Standardeinstellung auswählen.
 Wenn die Standardeinstellung zuvor nicht geändert wurde, können sie entfallen: pcs 0 sps 0 mss 214

- Die Standardeinstellung der Aufzeichnungsmaske (sofern nicht zuvor festgelegt) lautet: alle bestückten Kanäle (außer Zeitkanal), alle ihre Unterkanäle und für alle von ihnen das Signal "gross".
- Ein Wert *line* (Zeile) wird auch als Wert *page* (Seite) bezeichnet. Es ist ein Satz von Werten, der durch die Konfiguration der Messratengruppe definiert ist. Für das obige Beispiel bedeutet dies, dass die Zeilen die Größe von zwei Gleitkommawerten für jede Messgruppe haben, da wir zwei Unterkanäle (jeder mit einem aktiven Signal) in eine Gruppe eingeteilt haben. Ein Gleitkommawert besteht aus 4 Bytes. Deshalb kommen die Messwerte als Vielfache von 2 Gleitkommawerten (size(line)=2) bzw. 8 Bytes an.
- In dem obigen Beispiel werden die Auswahlen über pcs und sps zweimal durchgeführt. Das kann gepackt werden:

```
pcs 1 (x) sps 3,4 (x) mrg 0 (x)
pcs 2 (x) sps 1,2 (x) mrg 1 (x)
icr 6320,0 (x)
icr 6319,1 (x)
pcs 1 (x) sms 3,4 (x) sps 3,4 (x) mss 214 (x)
pcs 2 (x) sms 1,2 (x) sps 1,2 (x) mss 214 (x)
Dies ist identisch mit:
pcs 1 (x) sms 3,4 (x) sps 3,4 (x) mss 214 (x) mrg 0 (x)
pcs 2 (x) sms 1,2 (x) sps 1,2 (x) mss 214 (x) mrg 1 (x)
icr 6320,0 (x)
icr 6319,1 (x)
```

22 OBJEKTVERZEICHNIS (OV)

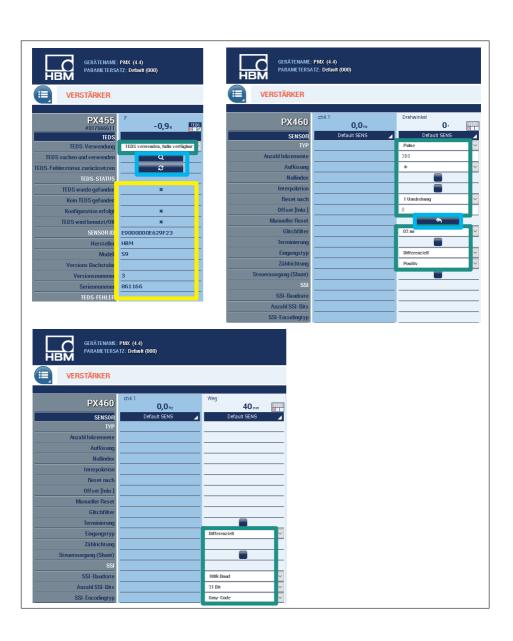
Das OV ist eine Sammlung von PMX-Setup- und Statusparametern. PMX-Parameter können daher ab der Firmware-Version 3.02 über ein PC- oder SPS-Programm geändert werden.

Das PMX-OV ist *nicht* das EtherCAT®-Verzeichnis zyklischer Datenobjekte. Die Ether-CAT®-Objekte sind nur für den EtherCAT®-Master sichtbar.

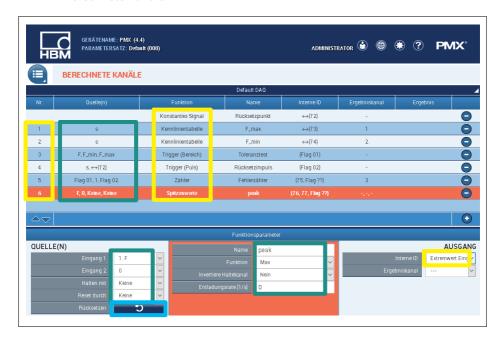
22.1 Zugängliche Datenobjekte

Das Objektverzeichnis (OV) beinhaltet alle relevanten Parameter der PMX-Einschubkarten (außer der Feldbuskarte) und der angelegten Berechnungskanäle im PMX. Zusätzlich gibt es noch Objekte zum Umschalten des Bediener-Levels.

Alle anderen verfügbaren Geräte-Parameter finden Sie in *Kapitel 21* "*Befehlssatz des PMX*", *Seite 351*, der .NET-API bzw. in den Gerätebeschreibungsdateien der Feldbusse (*Kapitel 16 "Kommunikation mit einem Steuerungssystem"*, *Seite 263*).


In den Screenshots geben die markierten Parameter einen Eindruck von den zugänglichen Datenobjekten. Datenobjekte, die sowieso periodisch über die Ethernet-Schnittstelle oder den Feldbus übertragen werden, sind im OV nicht sichtbar.

Nur Lesen Lesen/Schreiben Nur Schreiben


22.1.1 Messkanäle

Das OV enthält praktisch alle Parameter aus dem Verstärkerdialogfeld.

22.1.2 Berechnete Kanäle

22.2 Nummerierungsplan

Ein Datenobjekt wird adressiert durch:

- Den Index 0x4000 ... 0x41ff, der normalerweise in Hexadezimalzahlen angegeben ist.
- Den Subindex 0 ... 255, der normalerweise in Dezimalzahlen angegeben ist.

Zum Beispiel bezeichnet 0x4123.45 das Datenobjekt mit dem Index 0x4123 und dem Subindex 45.

22.2.1 Allgemeine Objekte

Index	Name	
0x4001.1	Anwenden	Durch Schreiben von "1" in dieses Objekt werden die vorher geänderten Parameter ange- wendet.
0x4002.1	Alle Parameter speichern	Zum Speichern aller Einstellungen im nichtflüchtigen Speicher. Dieser Parameter ruft dieselbe Funktion auf wie das Symbol zum Speichern
		auf der Web-Benutzeroberfläche.
		Hinweis: Der Befehl kehrt sofort zurück, obwohl der Speichervor- gang einige Sekunden dauert.

22.2.2 Messkanäle

Index	Datenobjekte von	Subindex
0x40 1 0	Steckplatz 1	Die Subindizes sind vom
0x40 11	Steckplatz 1, Signal 1	tatsächlich eingebauten
0x40 1x	Steckplatz 1, Signal x	Modultyp abhängig. Sie werden in den generierten
0x40 2 0	Steckplatz 2	Dateien aufgelistet.
0x40 21	Steckplatz 2 , Signal 1	
0x40 3 0	Steckplatz 3	
0x40 4 0	Steckplatz 4	

22.2.3 Berechnete Kanäle

Index des Funktionsbausteins = 0x40A0 + Berechnungsposition

Index	Datenobjekte von	Subindex
0x40A1	Der Funktionsbaustein an Berechnungsposition 1	Die Subindizes sind vom Funktionsbausteintyp abhängig. Sie werden in den
	BERECHNETE KANÄLE	generierten Dateien aufgelistet.
	Nr. Quelle(n) Funktion	aurgenstet.
	Konstantes Signal	
	1 s Kennlinientabelle	
	2 s Kennlinientabelle	
0x40A2	Der Funktionsbaustein an Berechnungsposition 2	
0x40D0	Der Funktionsbaustein an Berech- nungsposition 48	

22.2.4 Konstante Signale

0x40E1	Benutzerdefiniertes konstantes Signal Nr. 1	8: Ausgangssignalkennung 22: Name
0x40E2	Benutzerdefiniertes konstantes Signal Nr. 2	30: Wert

22.2.5 Passwörter

Die Passwörter im PMX-Browser für die Benutzerebenen WARTUNG und ADMINISTRATOR lassen sich temporär abschalten, z. B. über eine SPS als Service-Zugang. Die Abschaltung erfolgt über das Datenobject 0x4003 Subindex 1 im Objektverzeichnis mit Zugang über Feldbus, Kommando-Interface (Ethernet), Common-API, oder CODESYS.

Datenformat von 0x4003 (uint32):

Bit 17 = 1 (0xnnn2 nnnn) entriegelt die ADMIN-Ebene.

Bit 16 = 1 (0xnnn1 nnnn) entriegelt die WARTUNGs-Ebene. Die Bits 16 und 17 können auch gleichzeitig gesetzt sein.

Bits 0 ... 15 (0xnnnn TTTT) enthalten den Timeout in Minuten. Bereich 1 ... 1440 Minuten. Größere Werte werden auf 1440 begrenzt.

Beispiele:

0x4003.1 = 0x0001 000A: WARTUNGs-Ebene für 10 Minuten freigegeben

0x4003.1 = 0x0002 05A0: ADMIN-Ebene für 1440 Minuten = 24 h freigegeben.

0x4003.1 = 0x0000 0000: OPERATOR-Ebene, GUI durch Passwörter verriegelt.

22.3 Datentypen

Das OV unterstützt die folgenden Datentypen aus IEC 61131.

BOOL	1 Bit	
USINT	8 Bit ohne Vorzeichen	
SINT	8 Bit mit Vorzeichen	
UINT	16 Bit ohne Vorzeichen	
INT	16 Bit mit Vorzeichen	
UDINT	32 Bit ohne Vorzeichen	
DINT	32 Bit mit Vorzeichen	
ULINT	64 Bit ohne Vorzeichen	Nicht über Feldbus zugänglich
LINT	64 Bit mit Vorzeichen	Nicht über Feldbus zugänglich
REAL	32 Bit mit Gleitkomma	
LREAL	64 Bit mit Gleitkomma	Nicht über Feldbus zugänglich
STRING		Nicht über Feldbus zugänglich

22.4 Zugang über Ethernet-Befehlsschnittstelle

Für allgemeine Informationen über die Befehlsschnittstelle siehe *PMX-Bedienungs-anleitung*, *Kapitel 21*, "Befehlssatz des *PMX*", Seite 351.

Der Befehl **oda** (Object Dictionary Access) dient zum Schreiben oder Lesen einzelner Datenobjekte über den Ethernet-Port 55000.

Query	oda? index,sub- index	Fragt den Wert des Datenobjekts ab index: Der Index des Datenobjekts in Dezimal- oder Hexadezimalschreibweise
		subindex: Der Subindex des Datenobjekts in Dezimal- oder Hexadezimalschreibweise
Ant-	index,sub-	Antwort von PMX
wort	index,value, error_code	index: Der Index der Abfrage in Dezimalschreibweise subindex: Der Subindex der Abfrage in Dezimalschreibweise value: Der Wert des Datenobjekts
		error_code:
		0: Kein Fehler, der zurückgegebene Wer ist gültig
		1: Zugangsfehler (z.B. Leseversuch bei einem Nur- Schreiben-Objekt)
		2: Formatfehler (z. B. Datentyp wird nicht unterstützt)
		4: Nicht gefunden, das Datenobjekt existiert nicht

Beispiel:

oda? 0x4011,13

(Ausgangsspannung von Objekt 0x4011.13, Steckplatz 1.1 lesen (Analogausgang PX878))

16401,13,0.125,0

(Erfolg, die Spannung beträgt 0,125 V)

oda? 0x4fff,1 (Objekt 0x4fff.1 lesen)

20479,1,0,4 (fehlgeschlagen, das Datenobjekt existiert nicht)

0-4	ada tadan ad	W
Setzen	n oda index,sub- index,value	Wert setzen
		index: Der Index des Datenobjekts in Dezimal- oder Hexadezimalschreibweise
		subindex: Der Subindex des Datenobjekts in Dezimal- oder Hexadezimalschreibweise
		value: Festzulegender Wert. Der Programmierer ist dafür verantwortlich, dass der Wert in den Daten- objekttyp konvertiert werden kann.
Ant-	index,subindex	Antwort von PMX
wort	· · · · · · · · · · · · · · · · · · ·	index: Der Index der Abfrage in Dezimalschreibweise subindex: Der Subindex der Abfrage in Dezimalschreibweise error_code:
		0: Kein Fehler, der Parameter wurde aktualisiert
		1: Zugangsfehler (z.B. Schreibversuch bei einem schreibgeschützten Objekt)
		2: Formatfehler (z. B. falscher Datentyp)
		4: Nicht gefunden, das Datenobjekt existiert nicht

Beispiel:

oda 0x4011,13,1.2
(Testsignal von Steckplatz 1.1 (=Ausgangsspannung) auf 1,2 V setzen)
16401,13,0
(Erfolg)
oda 0x4011,14,1
(Testsignal von Steckplatz 1.1 aktivieren)
16401,14,0
(Erfolg)
oda 0x4011,19,"mein Kanal" (Kanalnamen von Steckplatz 1.1 festlegen)
16401,19,0
(Erfolg)

22.5 Zugang über Feldbus

Für allgemeine Informationen über die Feldbuskommunikation siehe Kapitel 16, "Kommunikation mit einem Steuerungssystem", Seite 263.

Hinweis: Über den Feldbus werden nur Datenobjekte übertragen, deren Wert sich in 32 Bit ausdrücken lässt. Dies sind BOOL, SINT, INT, DINT, USINT, UINT, UDINT und REAL.

LREAL-Werte werden als REAL-Werte übertragen und verlieren dabei ein wenig an Genauigkeit.

Vor dem Senden einer Anfrage über den Feldbus muss der Dienst mit Bit 1 im Gerätesteuerwort aktiviert werden.

Ausgangsdaten Steuerung (SPS) ⇒ PMX Gerätedaten (zyklisch)

PROFINET®/EtherCAT®

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
Geräte-Steuerwort	Bit1 (Wert 0x02): Enable Objekt-Verzeich- nis-Server	7000.1	0.2 bytes 03	uint32

EtherNet/IP™

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot
Index	Size in octets	Туре	Tag
03	4	UDINT	PMX Control

22.5.1 Senden einer Anfrage

Lese- und Schreibanfragen an das OV werden über das (bisher ungenutzte) Datenwort "GUI signaling" übermittelt. Für Bitbelegung siehe *Abschnitt 16.5.1*, *Seite 270*, *und Abschnitt 16.9.3*, *Seite 284*.

Ausgangsdaten Steuerung (SPS) ⇒ PMX Gerätedaten (zyklisch)

PROFINET®/EtherCAT®

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
GUI-Signalisierung	Kommando Objektverzeich- nis	7000.3	0.2 bytes 815	uint64

EtherNet/IP™

Index	Size in octets	Туре	Tag	
815	8	ULINT	UiControl	SystemData (transmitted always)

22.5.2 Bitbelegung

Bitbelegung für Anfrage und Antwort

Bit 63 56	Bit 55 48	Bit 47 40	Bit 39 32	Bit 31 24	Bit 23 16	Bit 15 8	Bit 7 0
Steuer- und Status- Flags	Subindex	Index		Wert			
				DINT, UDI	NT, REAL		
				Nicht verw auf Null se		INT, UINT	•
				Nicht verw setzen!	endet, auf	Null	SINT, USINT
				BOOL (wal	hr, wenn >	0)	

Die Steuer-/Status-Flags

Bitnum- mer in 64-Bit- Wort	Bit- nummer in Oktett	SPS setzt Steuerbits PMX setzt Statusbits	
63	7	Steuerung	Leseanfrage. Dieses Bit setzen, um ein Date- nobjekt zu lesen.
62	6	Steuerung	Schreibanfrage. Dieses Bit setzen, um in ein Datenobjekt zu schreiben.
61	5	Steuerung	Wiederholtes Lesen (nicht verfügbar mit einer Schreibanfrage)
			0: PMX antwortet einmal
			1: PMX aktualisiert die Antwort permanent bis zur folgenden Anfrage

Bitnum- mer in 64-Bit- Wort	Bit- nummer in Oktett	SPS setzt Steuerbits PMX setzt Statusbits	
60	4		Nicht verwendet
59	3		Nicht verwendet
58	2	Status	Nicht gefunden, das Datenobjekt existiert nicht
57	1	Status	Formatfehler (z. B. falscher Datentyp)
56	0	Status	Zugangsfehler (z.B. Schreibversuch bei einem schreibgeschützten Objekt)

Bitbelegung von REAL-Werten (32 Bits mit Gleitkomma)

Vorzeichen	Exponent	Bruch
Bit 31	Bits 3023	Bits 220

22.5.3 Die Antwort von PMX

PMX antwortet im (bisher ungenutzten) Datenwort "GUI status". Für Bitbelegung siehe Abschnitt 16.4, Seite 266, und Abschnitt 16.9.3, Seite 284.

Eingangsdaten PMX ⇒ Steuerung (SPS)

Gerätedaten (zyklisch)

PROFINET®/ EtherCAT®

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
GUI-Status	Antwort Objekt- verzeichnis	6000.3	0.2 bytes 815	uint64

FtherNet/IP™

Funktion		EtherCAT [®] Index	PROFINET® Slot.Subslot	Daten- typ
Index	Size in octets	Туре	Tag	
815	8	ULINT	UiStatus	SystemData (transmitted always)

22.5.4 Antwort auf eine Leseanfrage

PMX kopiert den Index, den Subindex, die Steuer-Flags und den abgefragten Wert in die Antwort.

Die Anfrage wurde erfolgreich bearbeitet, wenn die Bits 32..63 der Antwort mit den Bits 32..63 der Anfrage übereinstimmen. Die Bits 0..31 enthalten den abgefragten Wert.

Benutzen Sie den Wert nicht, wenn eines der Fehler-Flags gesetzt ist.

22.5.5 Antwort auf eine Schreibanfrage

PMX kopiert alle Daten aus der Anfrage in die Antwort.

Die Anfrage wurde erfolgreich bearbeitet, wenn alle 64 Bits der Antwort mit der Anfrage übereinstimmen.

22.5.6 Erneuter Versuch

Um eine fehlgeschlagene Anfrage erneut zu senden, muss mindestens ein Bit der Anfrage geändert werden. Normalerweise wartet PMX auf Änderungen in der Anfrage.

Beispiel:

Schalten Sie zum erneuten Senden einer Leseanfrage das Lesesteuerbit (Bit 63) um.

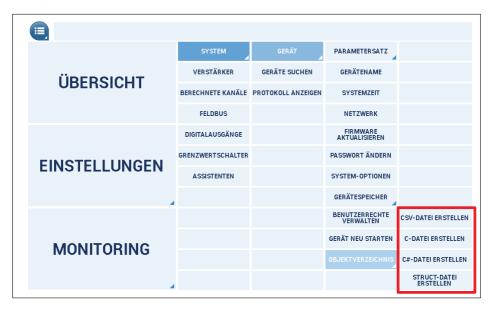
- Setzten Sie das Lesesteuerbit = 0
- 2. Warten Sie auf Lesesteuerbit == 0 in der Antwort
- 3. Setzten Sie das Lesesteuerbit = 1
- 4. Prüfen Sie die Antwort

22.6 Anwenden des neuen Werts

Die meisten Werte müssen nach dem Ändern explizit angewendet werden.

Schreiben Sie "1" in 0x4001.01, um die geänderten Werte anzuwenden (Befehl oda 0x4001,1,1).

Es ist eine bewährte Vorgehensweise, erst alle Parameter zu ändern und dann 0x4001.01 zu setzen, um alle Werte gleichzeitig anzuwenden. (Hinweis: Im Gegensatz dazu wird jede Parameteränderung auf der Weboberfläche sofort wirksam.)


Diese Werte müssen nicht explizit angewendet werden. Sie werden sofort nach dem Schreiben wirksam:

Index	Subindex	Name
0x40yz	10	set_zero
wobei y = 14	11	zero_value test_signal test_signal_enable
	15	
	16	
(Funktionsbau- steine) Peak Hold digital	33	reset_now

22.7 Generierte Header-Dateien

PMX generiert Header-Dateien, um Ihnen die Programmierarbeit zu erleichtern.

Richten Sie zunächst die berechneten Kanäle über die Web-Benutzeroberfläche ein. Lassen Sie das PMX anschließend eine CSV-, C-, C#- oder ST- (strukturierter Text) Datei generieren.

Beachten Sie, dass zwei *C*-Dateien erstellt werden. Das Downloadfenster des Browsers wird zweimal angezeigt.

Die Strukturierter-Text- (ST, SCL) Datei für SPS kann nur in bestimmte SPS-Konfigurations-Tools importiert werden. Falls dies nicht möglich ist, kopieren Sie den Inhalt und fügen Sie ihn in Ihren Quellcode ein.

Die Dateien enthalten eine Liste aller Datenobjekt-, Typ- und Konstantendefinitionen.

Wichtig

Beachten Sie, dass durch Hinzufügen, Verschieben oder Löschen berechneter Kanäle das Objektverzeichnis geändert wird. Die Dateien müssen erneut generiert werden.

22.7.1 Wertebereiche der Objekte

Die meisten Datenobjekte sind lediglich Zahlen. Der zulässige Datenbereich ist in der Liste für das Objekt angegeben.

Beispiel aus den C-Header-Dateien

Objekt 0x4021.19 ist der Filtertyp von Steckplatz 2.1.

Die Zeichenkette "FILTER_CHARACTERISTIC" definiert den Wertebereich

```
{ 0x4021, 19, 2, 1, odDINT, 1, ACCESS_RW, "[slot2.1] filter_type", "FILTER_CHARACTERISTIC"}
```

Die zulässigen Werte finden Sie in der .h-Datei.

/* FILTER_CHARACTERISTIC */ enum FILTER_CHARACTERISTIC{ fltBessel = 0, fltButterworth = 1 };

Wichtig

Beachten Sie, dass die meisten Datenobjekte NICHT von der Firmware auf Bereichsüber- oder -unterschreitungen GEPRÜFT werden. Dafür sind Sie verantwortlich.

RANGE_AS_DATA_TYPE gibt einen uneingeschränkten Bereich an. Der Wert kann praktisch jede Zahl des Datentyps sein, wird jedoch normalerweise durch den dahinterstehenden Kontext beschränkt.

```
{ 0x4021, 15, 2, 1, odREAL, 1, ACCESS_RW, "[slot2.1] test_signal", "RANGE_AS_DATA_TYPE"}
```

22.8 Tipps zur Nutzung des Objektverzeichnisses

Beste Reihenfolge zur Nutzung berechneter Kanalobjekte:

- 1. Richten Sie die berechneten Kanäle über die Weboberfläche ein.
- 2. Lassen Sie das PMX die Dateien mit Definitionen und Datenobjekten erstellen.
- 3. Bearbeiten Sie die Datenobjekte mit Ihrem PC- oder SPS-Programm.

Wichtig

Wenn die Berechnungsreihenfolge von berechneten Kanälen geändert wird, ändern sich ebenfalls die Indizes der entsprechenden Datenobjekte.

Wenn Funktionsbausteine erstellt/gelöscht werden, werden die entsprechenden Datenobjekte ebenfalls erstellt/gelöscht.

Die meisten Datenobjekte werden NICHT von der Firmware auf Bereichsüber- oder -unterschreitungen geprüft. Der Benutzer ist dafür verantwortlich, zulässige Daten einzugeben.

Die Leistung beim Zugriff auf Datenobjekte über den Feldbus beträgt normalerweise 25 ... 35 ms pro Anfrage.

23 QUALITÄTSNACHWEISE UND KALIBRIERSCHEINE

Dokumentierte Qualität:

Im Gerätespeicher (public -> certificates) des PMX sind bereits bei Auslieferung die HBM-Werkskalibrierscheine der bestückten Messkarten und eine Werksbescheinigung 2.1 nach EN 10204 als PDF-Dokumente abgelegt.

Laden Sie sie von dort über den PMX-Browser und das Menü Gerätespeicher herunter.

Wird das Gerät bei HBM rekalibriert, so werden die neuen Kalibrierscheine ebenfalls wieder im Gerätespeicher abgelegt. Somit existiert eine lückenlose Dokumentation.

Für Feldbuskarten wird kein Kalibrierschein erstellt. Die einwandfreie Funktion wird mit der Werksbescheinigung dokumentiert.

Sollten die PDF-Dokumente im Gerätespeicher gelöscht worden sein, können Sie dies über den technischen Support von HBM wieder beschaffen: support@hbkworld.com.

24 FIRMWARE-AKTUALISIERUNG (UPDATE)

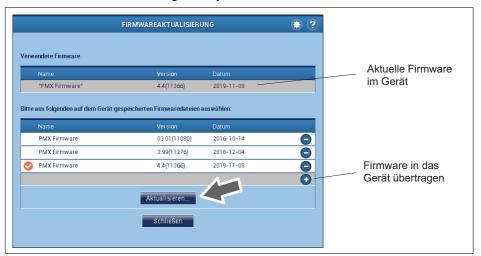
24.1 Vorbereitung

Sie können einzelne oder mehrere PMX gleichzeitig aktualisieren. Dazu müssen das oder die PMX mit dem PC (HOST) verbunden sein.

Eine Firmware-Aktualisierung dauert ca. 15 Minuten. Während der Aktualisierung ist das Gerät *nicht* messbereit.

Laden Sie die aktuelle Firmware-Datei von HBM über https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/ herunter.

Um ein bestimmtes Gerät zu identifizieren:


Wählen Sie ein Gerät aus (Checkbox) und klicken Sie auf Blinken. Alle steuerbaren LEDs (System-LED, Messkarten-LED) am gewählten PMX blinken zur Identifizierung.

- Klicken Sie auf Verbinden
- Kopieren Sie die Firmware-Datei, z. B. "PMX_01.10-7412M.tgz", auf den lokalen PC (HOST) kopieren.

24.2 Firmware aufspielen

1. Wählen Sie Menü Einstellungen -> System -> Gerät -> FIRMWARE AKTUALISIEREN.

- 2. Übertragen Sie die neue Firmware in das Gerät, indem Sie auf das Pluszeichen (+) klicken und den Speicherort angeben. Sie können dabei auswählen, ob Sie die Firmware nur in das Gerät laden wollen oder auch gleich anwenden.
- Falls die Firmware im Gerät ist, wählen Sie die gewünschte Firmware durch einen Klick auf den entsprechenden Eintrag aus. Die Auswahl wird durch ein Häkchen signalisiert.
- 4. Starten Sie die Aktualisierung durch Anklicken der Schaltfläche Aktualisieren.

Nach der Aktualisierung verbindet sich der Browser wieder mit dem Gerät.

Wichtia

Wenn während der Firmware-Aktualisierung die Spannungsversorgung ausfällt können zwei Fälle auftreten:

- 1. Das Gerät meldet sich nach dem Einschalten wieder mit seiner alten Firmware oder
- 2. das Gerät lädt und initialisiert die neue Firmware und ist dann nach ca. 10 bis 15 Minuten betriebsbereit.

Tipp

Die Geräteeinstellung und Parametersätze bleiben nach einer Firmware-Aktualisierung erhalten. Wir empfehlen trotzdem vor der Firmware-Aktualisierung ein Backup auf einem PC zu erstellen.

Ab Firmware-Version 2.0 bleiben auch CODESYS-Applikationen und CODESYS-Web-Visu nach einer Firmware-Aktualisierung auf eine höhere Firmware-Version erhalten.

25 DIAGNOSE UND WARTUNG (HEALTH-MONITORING)

Bevor Sie mit den eigentlichen Messungen beginnen, sollten Sie Ihr System überprüfen.

25.1 Fehlermeldungen / Betriebszustand (LED-Anzeige)

Damit das System messbereit ist, müssen die LEDs auf dem Grundgerät und den Einschüben die in den *Abschnitten 8.2.3 bis 8.2.5 und Abschnitt 8.1, ab Seite 47* beschriebenen Stati anzeigen.

Sollte dies nicht der Fall sein, beachten Sie die Hinweise unter "Abhilfe" in den folgenden Tabellen.

SYS-LED

LED	Zustand	Bedeutung	Abhilfe
ariin	Ein	Spannungsversorgung vorhanden	-
grün	Aus	Spannungsversorgung aus	Spannungsversorgung überprüfen
<u> </u>	Ein	Gerät bootet	
gelb	Blinkend	Werkseinstellungen nicht OK	Gerät einsenden
	Blinkend	interner schwerer Fehler	Montage der Einschub-
rot	Ein	Firmwareaktualisierung läuft	karte prüfen und ggf. Tauschen.

PX01EC, EtherCAT®

LED	LED	Zustand	Bedeutung
	-	Aus	kein Fehler
ERR Error- Status	rot	blinkend	Konfigurationsfehler: die Konfiguration auf der SPS-Seite (Master) muss <i>genau</i> der Konfiguration des PMX (Slave) entsprechen, z. B. Kartentypen in den Slots 1 bis 4 und die Anzahl der berechneten Kanäle (siehe PMX-Browser im Menü Feldbus).
		Single Flash	Synchronisationsfehler
		Double Flash	Application-Timeout-Fehler
		Ein	PDI-Timeout-Fehler

PX01PN, PROFINET®

LED	LED	Zustand	Bedeutung
SF Systemfehler	rot	Ein	Keine Verbindung oder keine gültige Lizenz.
		Blinkend	Fehlerhafte Konfiguration: die Konfiguration auf der PROFINET®-Master-Seite (SPS) muss genau der Konfiguration des PMX entsprechen, z. B. Kartentypen in den Slots 1 bis 4 und die Anzahl der berechneten Kanäle (siehe PMX-Browser im Menü Feldbus).
BF Busfehler	rot	Ein	Keine Verbindung oder keine gültige Lizenz.
		Blinkend	Fehlerhafte Konfiguration, nicht alle IO-Geräte sind angeschlossen.

EtherNet/IP™

LED	LED	Zustand	Bedeutung
MS	Duo LED rot/grün		
Modus- Status	-	Aus	Nicht eingeschaltet: Das Gerät ist nicht eingeschaltet.
	grün	Ein	Gerät betriebsbereit: Das Gerät ist in Betrieb ist und läuft korrekt.
		Blinkt	Standby: Das Gerät wurde nicht konfiguriert.
	rot	Ein	Schwerer Fehler: Das Gerät hat einen nicht behebbaren schweren Fehler festgestellt.
		Blinkt	Einfacher Fehler: Das Gerät hat einen behebbaren einfachen Fehler festgestellt.
			Die Konfiguration auf der SPS-Seite (Master) muss genau der Konfiguration des PMX(Slave) entsprechen; Kartentypen in den Slots 1 bis 4 und die Anzahl der berechneten Kanäle (siehe PMX-Browser im Menü Feldbus). Hinweis: Eine fehlerhafte oder folgewidrige Konfiguration wird z. B. als einfacher Fehler eingestuft.
	o tot/grün	Blinkt	Selbsttest: Das Gerät durchläuft sei- nen Selbsttest.

LED	LED	Zustand	Bedeutung
NS	Duo LED rot/grün		
Network- Status	-	Aus	Nicht eingeschaltet, keine IP-Adresse: Das Gerät hat keine IP-Adresse (oder ist nicht eingeschaltet).
	grün	Ein	Verbunden: Das Gerät hat mindestens eine bestehende Verbindung zu einem anderen Gerät (auch zum Nachrich- ten-Router).
	rot	Blinkt	Keine Verbindungen: Das Gerät hat keine bestehende Verbindungen zu einem anderen Gerät, aber eine IP-Adresse erhalten.
		Ein	Doppelte IP: Das Gerät hat festge- stellt, dass seine IP-Adresse schon verwendet wird.
		Blinkt	Time-OUT der Verbindung: Eine oder mehrere der Verbindungen zu diesem Gerät befinden sich im Time-out. Dieser Status wird erst beendet, wenn alle sich im Time-out befindenden Verbindungen wiederhergestellt wurden oder wenn das Gerät zurückgesetzt wurde.
	ot/grün	Blinkt	Selbsttest: Das Gerät durchläuft seinen Selbsttest.

PX401, Kanalstatus

LED	Zustand	Bedeutung	Abhilfe
	Ein	keine Fehler	-
grün			
gelb	blinken	Firmwareaktualisierung läuft	-
rot	Ein	Parameter nicht OK, Übersteuert	Überprüfen von: Sensor, Sensorleitungen, TEDS- Modul, ggf. Karte einsenden

PX455, Kanalstatus

LED	Zustand	Bedeutung	Abhilfe
	Ein	keine Fehler	-
grün			
gelb	Ein Blinkend	Kein Aufnehmer ange- schlossen oder Draht- bruch (Kalibrierung läuft) Firmwareaktualisierung läuft	Aufnehmer anschließen
rot	Ein	Parameter nicht OK, Aufnehmerfehler, Übersteuert	Überprüfen von: Sensor, Sensorleitungen, TEDS- Modul, ggf. Karte einsenden

PX878, Kanalstatus

	Analog		Abhilfe
grün	Ein	Analogausgang konfiguriert	-
gelb	Blinkend	Firmwareaktuali- sierung läuft	-
rot	Ein	Analogausgang übersteuert, Signal ungültig oder kein Signal zugewiesen	Sensorsignal prüfen, Einstellungen für Analogausgangskanal prüfen

Synchronisation SYNC

LEDs Buchse IN:

IN		Bedeutung	Abhilfe
grün	Aus	Slave	-
Aus	Aus	Master	-
Aus	gelb	Fehler	Kabelverbindung zum Master/Slave prüfen

LFDs Buchse OUT:

OUT		Bedeutung	Abhilfe
grün	Aus	Power ein	-
Aus	gelb	Fehler (immer identisch mit rechter LED von Buchse IN)	Kabelverbindung zum Master/Slave prüfen

25.2 Fehlermeldungen des Gerätestatus

Der Gerätestatus wird direkt am PMX über die Geräte-LED (grün = OK / rot = Fehler) signalisiert. Bei einer Fehlermeldung können Detailinformationen zum Gerätestatus über den Web-Browser und einen Doppelklick auf die System-LED, den PMX-Befehlssatz oder den Feldbus abgerufen werden.

25.2.1 Fehler in den Werkseinstellungen

Produktionsdaten fehlen (Seriennr, Prod-Datum 0). Das Gerät ist nicht am HBM-Endprüfplatz getestet worden. Die System-LED blinkt gelb.

Das Gerät ist trotzdem uneingeschränkt betriebsfähig.

25.2.2 SYNC-Master

Status-Bit, kein Fehler. Wenn gesetzt, ist das Gerät der Sync-Master, d. h., es wurde kein Sync-Signal an der Sync-IN Buchse erkannt.

25.2.3 SYNC-Fehler

Fehlerhafte oder fehlende Sync-Telegramme. Deutet auf Verbindungsprobleme an Sync-In-Buchse hin.

25.2.4 SYNC-Regler-Fehler

Das Gerät kann als Slave nicht dem Master folgen. Der Regler ist in der Sättigung. Die Zeitstempel und die TF (Trägerfrequenzverstärker) sind nicht synchron.

25.2.5 Herzschlag

System-Bit, kein Fehler. Blinkt mit ca. 1 Hz. Bei Stillstand liegt ein CPU-Fehler vor.

25.2.6 Sensorspeisung überlastet

An mindestens einer Messkarte wurde die Sensorspeisung wegen Überstrom abgeschaltet.

25.2.7 Pufferüberlauf in Befehlsschnittstelle

In catman® oder dem Kommando-Interface sind wegen Pufferüberlauf Messwerte verloren gegangen.

25.2.8 System nicht bereit

Das Gerät ist beschädigt und liefert keine gültigen Messwerte.

Temporär gesetzt bei Parametersatz-Umschaltung (ok).

Statisch gesetzt, wenn der Parametersatz nicht mit der Kartenkonfiguration übereinstimmt. Kommt vor, wenn Karten entfernt/ergänzt/getauscht worden sind oder wenn ein unpassender Parametersatz importiert wurde.

25.2.9 CPU-Überlastung bei Berechnungen

Rechenzeit-Überschreitung in den berechneten Kanälen. Die Folge können Lücken im Messdatenstrom sein.

Temporär unschädlich beim Parametersatz-Umschalten, Editieren von berechneten Kanälen oder Selbstkalibrierung der Brücken-Eingänge.

Wenn während Normalbetrieb gesetzt: Anzahl Funktionsblöcke reduzieren und/oder globale Abtastrate reduzieren (38,4 kHz -> 19,2 kHz).

25.3 Zurücksetzen des PMX-Administrator-Passwortes

Dieses Verfahren hat keine Auswirkungen auf das Passwort für die Wartungs-Ebene.

1. Benutzer

Senden Sie sowohl den PMX-Hostnamen als auch die MAC-Adresse an das Technical Support Center (TSC) von HBM: support@hbkworld.com.

Sie finden den Hostnamen im Übersichtsbildschirm ("Overview") und im Netzwerkdialog ("Network"). Sie finden die MAC-Adresse im Netzwerkdialog ("Network") und auf dem Aufkleber an der Unterseite.

2. Technical Support Center von HBM

Das TechnicalSupportCenter von HBM erstellt eine Datei mit Signatur.

Die Signatur wird in einer Datei mit Namen "pmx-password-reset" gespeichert und an Sie zurück gesendet.

3. Benutzer

Kopieren Sie die Datei "pmx-password-reset" in das Stammverzeichnis eines USB-Sticks. Stecken Sie diesen Stick an die USB-Buchse des PMX an, während das PMX normal in Betrieb ist.

Das Administratorpasswort wird sofort entfernt und die Datei wird vom USB-Stick gelöscht.

Falls Sie eine Kopie der Reset-Datei behalten möchten, um das Passwort auch in Zukunft zurücksetzen zu können, speichern Sie die Datei an einem sicheren Ort. Solange Sie den Hostname des Gerätes nicht ändern, können Sie die Datei weitere Male verwenden.

25.4 Zurücksetzen des PMX auf Werkseinstellungen

Das Zurücksetzten aller Geräteeinstellungen erfolgt im Menü Einstellungen -> System -> Gerät -> Gerätespeicher -> Werkseinstellungen wiederherstellen.

Diese Funktion ist nicht in der Benutzerebene 1 (Operator) zugänglich.

Durch Laden der Werkseinstellung werden folgende Einstellungen gelöscht:

- Alle Kanal- und Verstärkereinstellungen (Messkanäle und berechnete Kanäle, z. B. Min/Max-Werte).
- Alle Geräteeinstellungen (z. B. Parametersätze).

Nicht gelöscht werden:

- Die Netzwerkkeinstellungen
- Die Passwörter für die unterschiedlichen Benutzerebenen (Operator, Wartung, Administrator)
- CODESYS-Applikationen und CODESYS Web-Visualisierungen (mit Updates ab Firmware 1.46)

25.5 Wiederherstellen von verlorenen PMX-Netzwerkeinstellungen und Gerätenamen

Wenn Sie das PMX nicht im Netzwerk finden, können Sie die Netzwerkeinstellungen mit einem USB-Speicherstick nach Wunsch einrichten.

 Erstellen Sie auf einem USB-Speicherstick im Stammverzeichnis eine Textdatei mit dem Namen pmx.conf

```
Diese Datei pmx.conf setzt den Gerätenamen auf "pmx_neuer_name", und schaltet
das PMX in den DHCP-Modus
<pmx type="set">
 <hostname>pmx_neuer_name</hostname>
 <network>
  <dhcp>true</dhcp>
 </network>
</ma>
Beispiel 2:
Setzt den Namen auf "pmx" stellt eine feste IP-Adresse ein:
<pmx tvpe="set">
 <hostname>pmx</hostname>
 <network>
  <ipaddress>192.168.1.2</ipaddress>
  <broadcast>192.168.255.255/broadcast>
  <netmask>255.255.0.0</netmask>
  <qateway>192.168.169.254</qateway>
  <dhcp>false</dhcp>
 </network>
</ma>
```

2. Stecken Sie den USB-Stick im laufenden Betrieb an das PMX-Gerät.

Die Einstellungen werden sofort geändert, sind aber nicht sofort in anderen Netzgeräten sichtbar. Deshalb ist es günstig, das PMX durch Unterbrechen der Versorgung neu zu starten.

Das PMX ist dann unter den neuen Einstellungen im Netz zu finden.

Achtung: Dieser Memory-Stick stellt jedes PMX-Gerät sofort nach dem Einstecken um! Die Datei sollte nach Gebrauch deshalb gelöscht, umbenannt oder in ein Unterverzeichnis verschoben werden.

Beispiel 1:

Netzwerkeinstellungen ändern

Netzwerkeinstellungen

25.6 Speichern und Wiederherstellen von PMX-Geräteeinstellungen und CODESYS-Applikationen

Wenn Sie alle Geräteeinstellungen, Parametersätze, Netzwerkeinstellungen und auch CODESYS-Applikation von einem PMX auf ein anderes PMX übertragen möchten (Gerät klonen), kann dies mittels eines USB-Speichers erfolgen. Passwörter können nicht mit übertragen werden und müssen manuell über den PMX-Browser geändert werden (siehe auch Abschnitt 10.3.2, "Passwörter", Seite 136).

Hinweis

Achten Sie darauf, dass die Bestückung beider Geräte gleich ist, da sonst die Einstellungen nicht übertragen werden können und es zu Fehlfunktionen kommen kann.

 Erstellen Sie auf einem USB-Speicher im Stammverzeichnis eine Textdatei mit dem Namen: "pmx.conf". Abhängig von dem Inhalt dieser Datei können beim Stecken des USB-Speichers in das Gerät verschiedene, nachfolgend beschriebene Aktionen gestartet werden:

Beispiel 1:

Speichern aller PMX-Geräteeinstellungen <u>mit</u> Netzwerkeinstellungen auf den USB-Speicher:

<pmx type="save"> path="defaults.pmx" />

Die Parametersatzdatei "defaults.pmx" können Sie auch durch das Speichern über den PMX-Browser mit Einstellungen -> System -> Gerät -> Gerätespeicher -> Sicherung zum PC erstellen.

Beispiel 2:

Laden aller PMX-Geräteeinstellungen <u>ohne</u> Netzwerkeinstellungen vom USB-Speicher:

<pmx type="load" path="defaults.pmx" />

Beispiel 3:

Wiederherstellen aller PMX-Geräteeinstellungen <u>mit</u> Netzwerkeinstellungen vom USB-Speicher:

<pmx type="restore">path="defaults.pmx" codesys="codesys.tgz"/>

- 2. Die Angabe des "codesys"-Attributs ist optional. Die Erzeugung einer "codesys.tgz" Datei ist nur mit einem WGX001-Grundgerät mit CODESYS-Lizenz möglich. Hierzu müssen zuerst mit der CODESYS-IDE (Entwicklungsumgebung) eine oder mehrere Applikationen auf das Gerät geladen werden. Anschließend können Sie unter Einstellungen -> System -> Gerät -> CODESYS -> Sicherung zum PC die "codesys.tgz" Datei speichern. Kopieren Sie diese auf den USB-Speicher.
- 3. Stecken Sie den USB-Speicher im laufenden Betrieb an das PMX. Die Einstellungen werden sofort übertragen.

Hinweis

Dieser Memory-Stick führt die Funktion nach Einstecken bei jedem Gerät durch! Die Datei sollte nach Gebrauch deshalb umbenannt, gelöscht oder in ein anderes Verzeichnis verschoben werden.

25.7 Austausch von Mess- und Kommunikationskarten

Mess-und Kommunikationskarten können nachträglich nachgerüstet oder entnommen werden. Beachten Sie dabei die Kombinationsmöglichkeiten (siehe *Abschnitt 8.2.1, "Kombinationsmöglichkeiten der Einschubkarten", Seite 50*).

Nach dem Umbau und Einschalten der Versorgungsspannung erkennt und initialisiert PMX die Hardwarekonfiguration automatisch.

Wichtig

Wurden Messkarten ergänzt, entnommen oder in anderen Steckplätze montiert, werden die Werkseinstellungen geladen. Sie müssen dann alle Parameter, auch für die vorhandenen Karten, neu eingeben.

Beim Ergänzen, Austausch oder dem Wegfall von Kommunikationskarten (EtherCAT®, PROFINET® oder EtherNet/IP™) bleiben die Parametereinstellungen erhalten. Hier ist eine Anpassung an den neuen Feldbus über das Konfigurationstool der Steuerung nötig.

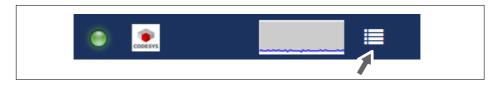
Läuft auf dem PMX eine CODESYS-Anwendung oder eine CODESYS Web-Visualisierung, bleiben diese ebenfalls nach einem Kartentausch erhalten. Bitte beachten Sie, dass das Signalmapping in CODESYS fest ist und bei einem Versetzen

der Messkarten überprüft und aaf, korriaiert werden muss.

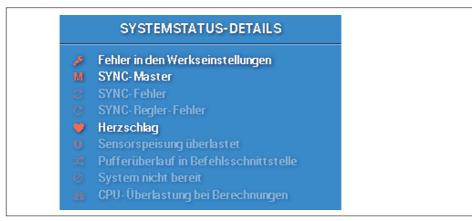
Bei Verwendung des Objektverzeichnisses verändert sich ebenfalls die Objektliste und Sie müssen die Header-Files neu erstellen und die Programmierung über Feldbus- oder PC-Steuerung anpassen.

25.8 Logdatei

Zur Verbesserung der Betriebssicherheit ist das PMX mit einer automatischen Logfunktion ausgestattet. Dabei werden die Benutzereingaben in allen drei Benutzerebenen und auch alle (Fehler)-Meldungen des PMX mitgeschrieben und intern im Gerät gespeichert.


Auch die Geräte- und Kanalstati werden mitgeschrieben und gespeichert.

Damit ist eine einfache und eindeutige Analyse im Fehlerfall möglich. Dabei hat Benutzerebene 1 (Operator) keine Rechte diese Datei zu löschen.


Die Dateigröße kann von Benutzerebene 3 (Administrator) zwischen 500 kB und 20 MB festgelegt werden. Optional können die Meldungen via Netzwerkprofil RCF5424 parallel

zum Logeintrag auch zu einem Netzwerkserver / PC transferiert und mit einem Standard-Texteditor gelesen werden.

Der Aufruf der Logdatei kann über das Symbol (siehe unten) oder das Benutzermenü erfolgen (Einstellungen -> System -> Protokoll anzeigen).

25.8.1 Systemlog-Einträge für Systemstatus

- Sync-Master oder -Slave:
 Kein Sync-Eingang. Umschaltung auf Master-Modus.
 Sync verfügbar. Umschaltung auf Slave-Modus.
- Sync-Signal fehlerhaft
 Zu viele CRC-Fehler am Sync-Eingang.
 Vorübergehende Umschaltung auf Master-Modus.
- Sync-Regler-Fehler
 Kopplung mit ankommendem Sync-Signal nicht möglich.
- Sensorspeisung überlastet: Systemstatus Überlastung Ausgang Sensorspeisung wurde "aktiviert". Systemstatus Überlastung Ausgang Sensorspeisung wurde "deaktiviert".
- Pufferüberlauf in Befehlsschnittstelle: Systemstatus Pufferüberlauf Befehlsschnittstelle wurde "aktiviert". Systemstatus Pufferüberlauf Befehlsschnittstelle wurde "deaktiviert".
- CPU-Überlastung bei berechneten Kanälen Laufzeitüberschreitung bei berechneten Kanälen.

Information

Die Stati für:

- "Fehler in den Werkseinstellungen"
- "Herzschlag"
- "System nicht bereit"

werden nicht mitgeschrieben bzw. gespeichert.

25.8.2 Systemlog-Einträge für Kanalstatus/ Messwertstatus

- Wenn der Kanalstatus von 0 auf ungleich 0 wechselt, d. h. mindestens 1 Fehler neu gesetzt wird und vorher kein Fehler vorlag, wird die Meldung: "Measval-status changed. New status: "invalid". Slot:X, Signal:Y" erzeugt.
 Wenn schon ein Fehler vorlag und ein Neuer hinzukommt, wird keine Meldung erzeugt.
- Wenn der Messwertstatus keine Fehlereinträge (mehr) enthält, d. h. auf gültig wechselt:
 - "Measval-status changed. New status: "valid". Slot:X, Signal:Y"

26 ENTSORGUNG UND UMWELTSCHUTZ

Alle elektrischen und elektronischen Produkte müssen als Sondermüll entsorgt werden. Die ordnungsgemäße Entsorgung von Altgeräten beugt Umweltschäden und Gesundheitsgefahren vor.

Auf dem Modul

Gesetzlich vorgeschriebene Kennzeichnung zur Entsorgung

Elektrische und elektronische Geräte, die dieses Symbol tragen, unterliegen der europäischen Richtlinie 2002/96/EG über elektrische und elektronische Altgeräte.

Das Symbol weist darauf hin, dass das Gerät nicht im Hausmüll entsorgt werden darf.

Nicht mehr gebrauchsfähige Altmodule sind gemäß den nationalen und örtlichen Vorschriften für Umweltschutz und Rohstoffrückgewinnung getrennt von regulärem Hausmüll zu entsorgen.

Falls Sie weitere Informationen zur Entsorgung benötigen, wenden Sie sich bitte an die örtlichen Behörden oder an den Händler, bei dem Sie das Produkt erworben haben.

Da die Entsorgungsvorschriften innerhalb der EU von Land zu Land unterschiedlich sein können, bitten wir Sie, im Bedarfsfall Ihren Lieferanten anzusprechen.

Verpackungen

Die Originalverpackung der HBM-Geräte besteht aus wiederverwertbarem Material und kann der Wiederverwertung zugeführt werden. Aus ökologischen Gründen sollte auf den Rücktransport der leeren Verpackungen an uns verzichtet werden.

Umweltschutz

Das Produkt hält für mindestens 20 Jahre die allgemeinen Grenzwerte gefährlicher Stoffe ein, ist für diesen Zeitraum umweltsicher zu verwenden und recyclebar. Dies wird durch das folgende Symbol dokumentiert.

Auf dem Modul

Gesetzlich vorgeschriebene Kennzeichnung für die Einhaltung von Schadstoff-Grenzwerten in elektronischen Geräten für die Lieferung nach China

27 FAQS

- Gibt es beim PMX Sicherungen, die gewechselt werden müssen?
 Nein. Das PMX verfügt über eine interne Strombegrenzung, die im Störfall die Leistungsaufnahme automatisch regelt.
- Gibt es bewegliche Teile, die gewartet werden müssen?
 Nein. Das PMX kommt ohne Lüfter u. Ä. aus und ist wartungsfrei.
- Sind die Stecker gegen Vertauschen geschützt?
 Im Auslieferungszustand nein. Aber über die beiliegenden Kodierstifte können Sie eine Kodierung / Vertauschungsschutz einbauen.
- Welche Steckeroptionen gibt es?
 Die Steckleisten werden standardmäßig als "Push-In"-Klemmen geliefert. Sie können sie auch als schraubbare Steckklemmen bestellen.
- Welche Möglichkeiten gibt es, die Messverstärker zu justieren?
 3 Möglichkeiten:
 - 1. Sensorwerte (Nullpunkt/ Spanne) als Zahlenwert eingeben
 - 2. Sensorwerte einmessen
 - 3. TEDS (Transducer Electronic Datasheet): Sensorwerte aus TEDS-Modul in den PMX-Verstärker einlesen und automatisch einstellen lassen.
- · Welche Möglichkeiten gibt es, das PMX mit einem Webbrowser zu verbinden?
 - 1. Direkte 1:1-Verbindung über Ethernet.
 - 2. Ethernetverbindung über ein Netzwerk.
- Muss ich Bediensoftware installieren?
 - Nein. Das PMX verfügt über einen internen Webserver zur Parametrierung. Sie benötigen lediglich einen Web-Browser, z. B. Windows Internet-Explorer (min. Version 9), Firefox oder Google Chrome. Optional können Sie auch die HBM-Software catman®Easy/AP zur Aufzeichnung und Datenanalyse nutzen.
- Was muss ich beim Verbinden des PMX mit dem PC beachten?
 Das Ethernetkabel muss gesteckt sein. Beide Teilnehmer (PMX, Werkseinstellung DHCP, und PC) müssen auf DHCP stehen. Verbindungsaufbau durch Eingabe von "PMX/" in der Adresszeile Ihres Browsers.
- Kann es zu Problemen kommen, wenn die RJ45-Anschlüsse von Ethernet, Feldbus und Synchronisation vertauscht werden?
 Nein. Alle Anschlüsse sind kurzschlussfest. Fehler können Sie über die Status-LEDs am Gerät oder im PMX-Webbrowser identifizieren.
- Was muss ich beim Einschubkartentausch beachten?
 Das PMX muss spannungslos sein! Nach dem Einschalten werden alle Karten automatisch erkannt. Es werden die Werkseinstellungen geladen. Alle Parameter, auch für die vorhandenen Karten, müssen neu eingegeben werden. Davon nicht betroffen ist der Tausch von Kommunikations- bzw. Feldbuskarten.

· Wie kann ich mehrere PMX synchronisieren?

schaltzeit zwischen 0.1 und 2.5 Sekunden.

- Durch die Verbindung der SYNC-Buchsen mit Standard Ethernetkabeln. Das erste PMX konfiguriert sich automatisch als Master, alle weiteren automatisch als Slaves. Es können max. 20 PMX-Geräte vernetzt werden.
- Wie viele Messkanäle stehen zur Verfügung?
 Ein PMX kann mit einer Feldbuskarte und max. 4 Messkarten ausgerüstet werden.
 Pro Messkarte sind max. 4 Messkanäle möglich, d. h. in Summe 16 Messkanäle.
- Wie viele Berechnungskanäle stehen zur Verfügung?
 Es stehen pro PMX immer 32 Berechnungskanäle im Grundgerät zur Verfügung.
 Damit können Sie von Spitzenwertberechnungen bis hin zu PID-Reglern vielfältigste Steuer- und Regelungsaufgaben im PMX erledigen. Nachgelagerte Systeme und SPSen werde entlastet.
- Wie hoch sind die Abtast- und Verarbeitungsraten im PMX?
 Alle Kanäle, Mess- und Berechnungskanäle, werden mit 19200 Hz bzw. bei PX460 mit 38400 Hz abgetastet und verarbeitet. Damit ist eine extrem schnelle Messdatenverarbeitung und Automatisierung möglich. Entnehmen Sie die Messbandbreiten den technischen Daten der einzelnen Messkarten.
- Wird nach einem Stromausfall die Zeit für die Messwertstempel gehalten?
 Nein, nach einem Neustart beginnen die Zeitstempel wieder bei Null.
- Wie hoch ist die Auflösung und die Genauigkeit des PMX?
 Die Messkanäle werden mit 24 Bit aufgelöst. Damit können auch noch sehr kleine Signale im Teillastbereich sicher und genau gemessen werden. Die Genauigkeitsklasse beträgt maximal 0,05%.
- Können Kanäle benachbarter PMX-Geräte verrechnet werden?
 Nein. Nur Mess- und Berechnungskanäle des eigenen PMX können verarbeitet werden, nicht die von andern, verbundenen Geräten.
- Wieviel Parametersätze / Messprogramme gibt es im PMX und wie hoch sind die Umschaltzeiten?
 Es können maximal 100 Parametersätze im PMX genutzt werden. Diese sind in 4 Teilparametersätze aufgeteilt, die separat umgeschaltet werden können.
 Je nachdem, wieviel Teilparametersätze umgeschaltet werden, dauert die Um-
- Kann das PMX auch als Feldbus-Master eingesetzt werden?
 Bei den Ethernet-basierten Feldbussen (EtherCAT®, PROFINET® und EtherNet/IP™) kann das PMX nur als Slave eingesetzt werden.
 Bei Verwendung der CANopen-Schnittstelle unter CODESYS Soft-SPS können Sie das PMX wahlweise als CAN-Master oder CAN-Slave betreiben.
- Was passiert, wenn während der Parametersatzspeicherung die Spannungsversorgung ausfällt?
 Dann ist der Parametersatz zerstört und das PMX meldet sich nach dem Einschal-

ten mit seiner Werkseinstellung. Um dies zu vermeiden, empfehlen wir, ein Backup der Geräteeinstellungen auf PC vorzunehmen.

- Was passiert, wenn w\u00e4hrend der Firmwareaktualisierung die Spannungsversorgung ausf\u00e4llt?
 - Entweder das Gerät meldet sich nach dem Einschalten wieder mit seiner alten Firmware oder das Gerät lädt und initialisiert die neue Firmware und ist dann nach ca. 10 bis 15 Minuten betriebsbereit.
- Was passiert mit einer CODESYS-Applikation nach einem Spannungsausfall?
 Wenn das CODESYS-Projekt als "Bootprojekt" gespeichert wurde läuft die Applikation nach dem Einschalten des PMX automatisch wieder los.
- Kann der Quellcode eines CODESYS-Projektes aus dem PMX wieder geladen werden?
 - Nein, da durch die Kompilierung Maschienencode erzeugt und in das PMX überspielt wird. Damit ist der Know-How-Schutz gewährleistet. Sie können jedoch bei der Programmerstellung zusätzlich den Original-Quellcode in das PMX übertragen. Dieser kann dann später wieder zurück in die CODESYS-Entwicklungsumgebung gespielt werden.
- Was passiert mit einer CODESYS-Applikation nach einer Firmwareaktualisierung oder einem Messkartentausch im PMX?
 Läuft auf dem PMX eine CODESYS-Anwendung oder eine CODESYS Web-Visualisierung, bleiben diese ebenfalls nach einem Kartentausch oder einer Firmwareaktualisierung (ab Firmware 1.46) erhalten. Bitte beachten Sie, dass das Signalmapping in CODESYS fest ist und bei einem Versetzen der Messkarten oder Verändern von PMX-Berechnungskanälen überprüft und ggf. korrigiert werden muss.
- Wo finde ich die aktuelle Firmware und Gerätebeschreibungsdateien?
 Die aktuellen Version der Firmware inklusive des PMX-Webservers sowie der Gerätebeschreibungsdateien können Sie von https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/ herunterladen.
- Gibt es ein Tool zur Elektrokonstruktion für PMX?
 Ja. Für PMX stehen fertige ePLAN-Makros auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/ zur Verfügung, die Sie lizenzfrei nutzen können.
- Gibt es 3D (STEP-Dateien) zur mechanischen Konstruktion (CAE) für PMX?
 Ja. Für PMX stehen STEP-Dateien auf https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/ kostenlos zur Verfügung.
- Woher bekomme ich Unterstützung bei Fragen?
 Bei technischen Fragen steht das HBM TSC (Technische Support Center) <u>support@hbkworld.com</u> zur Verfügung, bei Fragen zur technischen Projektierung und Auslegung beantworten unsere Kollegen vom Application Engineering <u>application-engineering@hbkworld.com</u> gerne Ihre Fragen oder kommen zu Ihnen vor Ort.

28 TECHNISCHE UNTERSTÜTZUNG

Sollten bei der Arbeit mit dem PMX-Messverstärkersystem Fragen auftreten, bietet Ihnen der technische Support von HBM:

E-Mail-Unterstützung

support@hbkworld.com

Telefon-Unterstützung

Die telefonische Unterstützung ist von 9:00 bis 17:00 Uhr (MEZ) an allen Werktagen verfügbar:

+49 6151 803-0

Eine erweiterte Unterstützung ist über einen Wartungsvertrag erhältlich.

Folgende Möglichkeiten stehen Ihnen ebenfalls zur Verfügung:

Softwareaktualisierung von HBM herunterladen

https://www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot/

HBM im Internet

https://www.hbm.com/contact/worldwide/

Hauptsitze weltweit

Europa

Hottinger Brüel & Kjaer GmbH Im Tiefen See 45, 64293 Darmstadt, Deutschland

Tel. +49 6151 803-0 E-Mail: info@hbm.com

www@hbm.com

Nord- und Südamerika

HBM, Inc., 19 Bartlett Street, Marlborough, MA 01752, USA

Tel. +1-800-578-4260 / +1-508-624-4500,

Fax +1-508-485-7480 E-Mail: <u>info@usa.com</u>

Asien

Hottinger Baldwin Measurement (Suzhou) Co., Ltd. 106 Heng Shan Road, Suzhou 215009, Jiangsu, VR China

Tel. (+86) 512 68247776, Fax (+86) 512 68259343

E-Mail: hbmchina@hbm.com.cn

29 GLOSSAR

APIPA RFC	Automatic Private IP Addressing, APIPA ist dafür gedacht, ein TCP/IP-Netzwerk betreiben können, ohne mit IP-Adressierung und IP-Parametern konfrontiert zu werden. In Microsoft Windows ist eine automatische IP-Adressen-Vergabe seit Windows 98 implementiert. Sie entspricht jedoch nicht vollständig dem RFC der IETF. Microsoft nennt dieses Verfahren Automatic Private IP Addressing oder kurz APIPA.
Bonjour	Bonjour ist eine Technik, die die automatische Erkennung von Netzwerkdiensten in IP-Netzen bereitstellt. Es ist eine Imple- mentierung des Zeroconf-Systems von Apple.
catman	Softwarepaket für die Messdatenerfassung und -verarbeitung: Messen, Analysieren und Auswerten von großen Messdateien inklusive mathematischer und grafischer Funktionen (Statistik, Signalanalyse, digitale Filter).
CAN-Bus	Der CAN-Bus (C ontroller A rea N etwork) ist ein serielles Bussystem und gehört zu den Feldbussen.
Cat-5-SFTP	Cat-5-Abschirmung. Die SFTP-Ausführung (Screened Foiled Twisted Pair) ist wie FTP aufgebaut, nur mit einer zusätzlichen Gesamtschirmung (Kupfergeflechtschirm) um die Leiterbündel.
CODESYS	CODESYS ist eine Entwicklungsumgebung für Speicherprogram- mierbare Steuerungen (SPS) nach dem IEC61131-3-Standard für die Applikationsentwicklung in der Industrieautomation.
Cross-Over-Kabel	Als Crossover-Kabel bezeichnet man in der Computer- netz-Technik (LAN-Technik) ein achtadriges Twis- ted-Pair-Kabel, bei dem in einem der beiden RJ45-Stecker ge- wisse Kabeladern vertauscht sind. Während ein nicht gekreuztes (straight through) Netzwerkkabel Computer zu Switches ver- bindet, kann man mit einem Crossoverkabel zwei Computer (oder zwei Switches) direkt miteinander verbinden. Die meisten PC nehmen eine solche Umschaltung zwischen direkt und gekreuzt automatisch vor.

DHCP

Das Dynamic Host Configuration Protocol (DHCP) ermöglicht die Zuweisung der Netzwerkkonfiguration an Clients durch einen

Server

Ein-/Ausgabekarte

Das PMX Grundgerät (WGX001/WGX002) kann von Slot1-4 frei mit Messkarten zur Erfassung von Messsignalen und Ausgabekarten zum Ausgeben von Analog- oder Digitalsignalen bestückt

werden.

EtherCAT®

EtherCAT® ("Ethernet for Controller and Automation Technology") ist ein von der Firma Beckhoff initiiertes Echtzeit-Ethernet. Das in IEC-Standard IEC61158 offengelegte Protokoll eignet sich für harte wie weiche Echtzeitanforderungen in der Automatisierungstechnik.

Die Schwerpunkte der Entwicklung von EtherCAT® lagen auf kurzen Zykluszeiten (≤100 µs), niedrigem <u>Jitter</u> für exakte Synchronisierung (≤1 µs) und niedrigen Hardwarekosten.

Feldbus

Ein Feldbus verbindet in einer Anlage Feldgeräte wie Messfühler (Sensoren) und Stellglieder (Aktoren) zwecks Kommunikation mit einem Steuerungsgerät. Wenn mehrere Kommunikationsteilnehmer ihre Nachrichten über dieselbe Leitung senden, dann muss festgelegt sein, wer (Kennung) was (Messwert, Befehl) wann (Initiative) sagt. Hierfür gibt es normierte Protokolle z. B. CAN-Bus.

GSDXMI

Die Funktionalität eines PROFINFT® IO-Devices ist immer in einer GSD-Datei beschrieben. In dieser Datei sind alle relevanten Daten enthalten, die sowohl für das Engineering als auch für den Datenaustausch mit dem IO-Device von Bedeutung sind. Mit der XML-basierten GSD sind PROFINET® IO-Devices beschreibbar. Den internationalen Standards folgend, ist die Beschreibungssprache der GSD-Datei die GSDML (Generic Station Description Markup Language). Wie der Name schon sagt, handelt es sich dabei um eine XML-Datei (eXtensible Markup Language), die sprachenunabhängig ist.

Greenline

HBM-Schirmungskonzept, welches sicherstellt, dass HBM-Produkte sicher und störungsfrei funktionieren und dass keine Störungen in die Umwelt abgegeben oder Versorgungsnetze helastet werden

GUI-Status	Kontrollwort zur Übertragung von Daten über den PMX- Webbrowser zu einer verbundenen SPS (diese Funktion ist z. Z. nicht aktiviert).
Host	Der Hostname (auch Sitename) ist die eindeutige Bezeichnung eines Rechners in einem Netzwerk. Er wird vorwiegend beim elektronischen Datenaustausch (z. B. E-Mail, Usenet, FTP) benutzt, um den Kommunikationspartner in einem von Men- schen les- und merkbaren Format anzugeben.
Industrial Ethernet	Ethernetbasierte Feldbusprotokolle weden als Industrial Ethernet bezeichnet (z. B. PROFINET®).
Kommunikationskarte	Das PMX-Grundgerät (WGX001/ WGX002) kann optional mit einer Feldbus-Kommunikationskarte in Slot0 bestückt werden. Damit realisieren Sie die Anbindung an einen Felbusmaster (SPS) über PROFINET®, EtherCAT® oder EtherNet/IP™. Diese Form der Automatisierung erlaubt deterministische Datenübertragung, d. h. Datenübertragung in vorher festgelegten Zeitintervallen.
Messkarte	Das PMX-Grundgerät (WGX001/WGX002) kann von Slot1-4 frei mit Messkarten zur Erfassung von Messsignalen bestückt werden.
NETBIOS	NetBIOS (Net work B asic I nput O utput S ystem) ist eine Programmierschnittstelle zur Kommunikation zwischen zwei Programmen über ein Netzwerk.
PROFINET®	PROFINET® (Process Field Net work) ist der offene Industrial Ethernet-Standard von <i>Profibus & Profinet International</i> (PI) für die Automatisierung. PROFINET® nutzt TCP/IP und IT-Standards, ist Echtzeit-Ethernet-fähig und ermöglicht die Integration von Feldbus-Systemen. Das Konzept von PROFINET® ist modular aufgebaut, so dass der Anwender die Funktionalität selbst wählen kann. Diese unterscheidet sich im Wesentlichen durch die Art des Datenaus-

tauschs, um unterschiedlichen Anforderungen an die Geschwindigkeit gerecht zu werden.

PROFINET®-IRT-Protokoll

Der taktsynchrone Datenaustausch mit PROFINET® ist im Isochronous-Real-Time (IRT) Konzept definiert. Die Datenaustausch-Zyklen liegen normalerweise im Bereich von wenigen hundert Mikrosekunden bis zu einer Millisekunde. Der Unterschied zur Real-Time-Kommunikation liegt im Wesentlichen im Determinismus, so dass der Beginn eines Buszyklus mit höchster Präzision eingehalten wird. Der Beginn eines Buszyklus kann maximal um 1 µs abweichen. IRT benötigt man beispielsweise bei Motion-Control-Anwendungen (Positioniervorgängen).

Push-In-Technologie

Einfaches, werkzeugloses Verdrahten in Klemmtechnologie. Die Technologie erlaubt die leichte und direkte Verbindung mit starren und flexiblen Leitern mit Aderendhülsen ab 0,34 mm². Eine Kontaktfeder öffnet sich selbsttätig und sorgt für die notwendige Anpresskraft.

RJ45

RJ-Steckverbindungen sind von der US-amerikanischen Federal Communications Commission (FCC) genormte Steckverbindungen für Telekommunikationsverkabelungen. Die Stecker und Buchsen gibt es in verschiedenen Ausführungen, Formen und mit verschiedener Anzahl von Kontakten. Zur Kategorisierung folgen die Bezeichnungen einem Schema: Die Bezeichnung beginnt mit der Buchstabenfolge *RJ*, gefolgt von zwei Ziffern, die den konkreten Steckertyp spezifizieren. Im Netzwerkbereich wird oft jeder vollbestückte achtpolige (8P8C)

Modularstecker "RJ-45" genannt.

RailClip

Auf einer Tragschiene mit U-förmigem Profil können unterschiedliche elektrische Betriebsmittel (zum Beispiel Relais) seitlich aufgeschoben oder von vorne aufgesteckt und arretiert werden Im Englischen wird die Tragschiene (auch: Hutschiene) meist als Rail bezeichnet.

RFC2131

Das Dynamic Host Configuration Protocol (DHCP) ermöglicht die Zuweisung der Netzwerkkonfiguration an Clients durch einen Server.

Das Dynamic Host Configuration Protocol wurde im RFC 2131 definiert und bekam von der Internet Assigned Numbers Authority die UDP-Ports 67 und 68 zugewiesen.

SIMATIC-Manager

Der SIMATIC-Manager verwaltet alle Daten, die zu einem Automatisierungsprojekt gehören – unabhängig davon, auf welchem Zielsystem, z. B. SIMATIC S7, sie realisiert sind.

SPS

SPS ist die Abkürzung für Speicherprogrammierbare Steuerung (Programmable Logic Controller, PLC). Die SPS steuert die Funktionen einer Maschine und dient als Schnittstelle zum PMX.

TEDS

TEDS steht für "Transducer Electronic Data Sheet" und deutet auf das elektronische Datenblatt eines Aufnehmers oder Sensors hin, das in einem elektronischen Modul gespeichert und untrennbar mit dem Aufnehmer verbunden ist.

Darüber hinaus werden wertvolle Metadaten wie z. B. Kalibrierdaten erfasst, die bei der Rückführbarkeit von Messungen oder Tests eine wichtige Information darstellen. Das elektronische Datenblatt kann im Gehäuse des Aufnehmers oder im nichttrennbaren Kabel oder Anschlussstecker untergebracht sein.

TwinCat

Das Beckhoff-*TwinCAT*-Softwaresystem verwandelt nahezu jeden kompatiblen PC in eine Echtzeitsteuerung mit Multi-SPS-System, NC-Achsregelung, Programmierumgebung und Bedienstation. TwinCAT substituiert herkömmliche SPS-und NC/CNC-Steuerungen sowie Bediengeräte.

TCP-IP

Transmission Control Protocol / Internet Protocol (TCP/IP) ist eine Familie von Netzwerkprotokollen und wird wegen ihrer großen Bedeutung für das Internet auch als Internetprotokollfamilie bezeichnet.

Die Identifizierung der am Netzwerk teilnehmenden Rechner geschieht über IP-Adressen. Ein Rechner oder allgemein ein Gerät mit IP-Adresse wird im TCP/IP-Jargon als *Host* bezeichnet. Ursprünglich wurde TCP als monolithisches Netzwerkprotokoll entwickelt, jedoch später in die Protokolle IP und TCP aufgeteilt. Die Kerngruppe der Protokollfamilie wird durch das User Datagram Protocol (UDP) als weiteres Transportprotokoll ergänzt. Außerdem gibt es zahlreiche Hilfs- und Anwendungsprotokolle, wie zum Beispiel DHCP und ARP.

Telnet

Telnet (*Telecommunication Network*) ist der Name eines im Internet weit verbreiteten Netzwerkprotokolls. Dieses alte und bekannte Client/Server-Protokoll basiert auf einem zeichenorientierten Datenaustausch über eine TCP-Verbindung. Programme, die die Funktion des Endgerätes implementieren, heißen häufig auch Telnet. Telnet besteht aus zwei Diensten: Telnet-Client und Telnet-Server.

VG-Leiste

Die DIN-Norm **DIN 41612**, umgangssprachlich als *VG-Leiste* bezeichnet, definiert Bauformen von Steckverbindern, welche primär zur mehrpoligen elektrischen Verbindung von Leiter-

platten im Bereich der Niederspannung dienen. Die Polanzahl der Stecker reicht von 20 bis 160 Pins.

Webserver

Ein Webserver ist ein Server, der Dokumente an Clients wie z. B. Webbrowser überträgt. Als Webserver bezeichnet man den Computer mit Webserver-Software oder nur die Webserver-Software selbst. Webserver werden lokal, in Firmennetzwerken und überwiegend als WWW-Dienst im Internet eingesetzt. Dokumente können somit dem geforderten Zweck lokal, firmenintern oder weltweit zur Verfügung gestellt werden. Die Hauptaufgabe eines Webservers ist die Auslieferung von Dateien, z. B. unveränderlichen HTML- oder Bild-Dateien oder dynamisch erzeugten Dateien, also Seiten, deren Inhalte stets individuell z. B. gemäß dem Profil eines eingeloggten Benutzers erstellt werden.

Zeitstempel

Ein Zeitstempel (englisch timestamp) wird benutzt, um einem Ereignis einen eindeutigen Zeitpunkt zuzuordnen.

STICHWORTVERZEICHNIS

A	E
AMT?, Amplifier Type Query, 352	Ein-Ausgabekarten, 23
Anbindung an einen PC, 18	Ein- Ausgabekarte PX878, 19
Anschließen PX401, 80 PX455, 62 PX460, 86	Eingangsdaten PMX, 265, 425 Einstellbeispiel, T40B an PMX, 104, 108, 113
PX878, 118 T10, T12, T40, 99 T20WN, 115 T20WN mit VK20A, 117 T210, 105 T21WN, 110	EtherCAT-Feldbusmodul, 124 EtherCAT-Verbindung, 158 Ethernet-Verbindung, 136 EtherNet/IP™, 281, 435 EtherNet/IP™-Feldbusmodul, 124
Anschlussbelegung CAN, 292	EtherNet/IP™-Verbindung, 160 ESR, Read status register, 361
B Berechnungen, 146 Berechnungsbeispiele, 217 Bonjour, 142	EUN, Engineering Unit, 354 EUN?, Engineering Unit Query, 355 MCS, Measuring Channel Select, 363 MCS?, Measuring Channel Select Query, 363
С	MRG, Measurement Rate Group, 365
CAN-Master, 331	MRG?, Measurement Rate Group Query, 365
CAN-Anschluss, 50 CODESYS, 15, 296	MSS, Subchannel Measurement Select, 364
CoE Object Dictionary, 278	MSS?, Measuring Signal Select Query, 365
D	SMS, Subchannel Measurement Select, 364
DMS-Messverstarker, 23 Drehmomentmessflansch, Messmodus,	SMS?, Subchannel Measurement Select Query, 364
86	Externe Messwerterfassung, 130, 131
Drehmomentmesswellen, anschließen, 86	F Fehlermeldungen, 433

Feldbus-Aktualisierungsrate, einstellen, N Netzwerkeinstellungen, 443, 446 Firmware-Aktualisierung, 346, 431 über USB-Stick, 142 Frequenzmesskarte, Messkarte Netzwerkverbindung, 137 (Frequenz), 19 NTP, Network Time Parameter, 366 NTP?, Network Time Parameter Query, G 366 Gerätebeschreibungsdatei, 262 Gerätedaten, 265 0 Greenline, 32 Objektverzeichnis, 414 Grundgerät, 22 P Parameter ändern, einrichten, 256 IDN?, Identification Query, 352 Parametersätze, 254 einrichten, 255 Interne Berechnungskanäle, 18 speichern, 258 verwalten, 256 K Passwort zurücksetzen, 441 Kommunikationskarten, 24 PC - oder Netzwerkanschluss, 49 Konfigurieren des PMX PCS, Programming Channel Select, 352 Dehnungsaufnehmer, 169 PCS?, Programming Channel Select Kraftaufnehmer, 168 Query, 353 Wegaufnehmer, 170 PMX-Bibliothek, 301 PMX-Package, 344 L PMX-Webserver, 136, 149 Logdatei, 447 PMX-interne Synchronisierung, 128 PROFINET, 273, 434 M PROFINET-IO-Feldbusmodul, 125 Messkarte, tauschen, 44 PROFINET-Verbindung, 157 Messkarte PX401, 18 Push-In Technologie, 46 Messkarte PX455, 18 PX01EC, 124, 434 Messkarten, 23 PX01EP. 124 Messprogramme, speichern, 258 PX01PN, 125, 434 Messwerte (zyklisch), 267

Montage, 37

R T20WN (ohne VK20A). anschließen/einstellen, 115 Reinigung, 12 T210, anschließen/einstellen, 105 Rückführbrücken, 68, 69, 70, 71, 72, 73 T21WN, anschließen/einstellen, 110 Technische Unterstützung, 454 S TEDS, 125 Schirmungskonzept, 32 TEDS-Modul, Inbetriebnahme, 126 Schutzart, 32 Tragschiene, 37 Signallaufplan, 315 Tragschienenmontage, 37 Signallaufzeiten, 152 Software, aktualisieren, 173 U Spannungsquellen, 23 Übertragungsgeschwindigkeit, 265 Spannungsversorgung, 49 UCC, User Channel Comment, 354 SPS, Subchannel Programming Select, 353 UCC?, User Channel Comment Query, 354 SPS?, Subchannel Programming Select Query, 353 Umschaltzeiten, 254 SRB. 397 USB-Anschluss, 49 Steuereingänge, 121 Strom/Spannungsmessverstärker, 23 W Stromguellen, 23 Wandhalter, 40 Synchronisation, 49 Wartung, 12 Synchronisationsmechanismen, 131 Webbrowser-Einstellbeispiel, T40B an PMX, 104, 108, 113 Systemevents, 317 WebVisualisierung, 330 Systemstatus, 266 Werkseinstellungen, 150, 256, 442

T10/T12/T40, anschließen/einstellen, 99

T20WN (mit VK20A), anschließen/einstellen, 117 **Z** Zeroconf. 142

Т